scholarly journals Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries

RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20549-20556 ◽  
Author(s):  
Fang Hu ◽  
Di Xie ◽  
Fuhan Cui ◽  
Dongxu Zhang ◽  
Guihong Song

Compared to the electrochemical performance for LIBs and NIBs, NaV3O8 nanobelts electrode for ZIBs shows excellent electrochemical performance, including high specific capacity of 421 mA h g−1 at 100 mA g−1, good rate performance and cycle performance.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingmeng Zhang ◽  
Henan Li ◽  
Shaozhuan Huang ◽  
Shuang Fan ◽  
Lingna Sun ◽  
...  

AbstractMgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc. Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated. The batteries measured in the 1 M ZnSO4−1 M MgSO4 electrolyte outplay other competitors, which deliver a high specific capacity of 374 mAh g−1 at a current density of 100 mA g−1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g−1 at 5 A g−1. This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.


2015 ◽  
Vol 3 (35) ◽  
pp. 17951-17955 ◽  
Author(s):  
Shibing Ni ◽  
Jicheng Zhang ◽  
Jianjun Ma ◽  
Xuelin Yang ◽  
Lulu Zhang

A high performance Li3VO4/N-doped C anode was successfully prepared, which shows high specific capacity and excellent cycle performance.


2020 ◽  
Vol 10 (10) ◽  
pp. 1697-1703
Author(s):  
Zebin Wu ◽  
Wei Zhou ◽  
Zhen Liu ◽  
Yijie Zhou ◽  
Guilin Zeng ◽  
...  

Flower-like C@V2O5 microspheres with high specific capacity were synthesized by a facile hydrothermal method. The microstructure, specific capacity and electrochemical properties of C@V2O5 microspheres were studied. Results showed that the C@V2O5 microspheres with a diameter of ∼3 m are covered over by V2O5 nanosheets, and therefore have a large surface area which is almost 5 times higher than that of pure V2O5 powders. Moreover, the initial specific capacity of C@V2O5 microsphere is as high as 247.42 mAh · g–1, and after 100 cycles, the capacity retention rate is still 99.4%. Compared with pure V2O5, flower-like C@V2O5 microspheres show higher discharge specific capacity, better rate performance and more stable cycling performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (25) ◽  
pp. 19241-19247 ◽  
Author(s):  
Lingyun Guo ◽  
Qiang Ru ◽  
Xiong Song ◽  
Shejun Hu ◽  
Yudi Mo

The as-prepared mesoporous ZnCo2O4 microspheres showed a high specific capacity and excellent electrochemical performance when used as an anode material for lithium ion batteries.


Author(s):  
Liming Liu ◽  
Xiaoxiao Huang ◽  
Zengyan Wei ◽  
Xiaoming Duan ◽  
Bo Zhong ◽  
...  

AbstractCoCO3 with high theoretical capacity has been considered as a candidate anode for the next generation of lithium-ion batteries (LIBs). However, the electrochemical performance of CoCO3 itself, especially the cyclic stability at high current density, hinders its application. Herein, pure phase CoCO3 particles with different particle and pore sizes were prepared by adjusting the solvents (diethylene glycol, ethylene glycol, and deionized water). Among them, CoCO3 synthesized with diethylene glycol (DG-CC) as the solvent shows the best electrochemical performance owing to the smaller particle size and abundant mesoporous structure to maintain robust structural stability. A high specific capacity of 690.7 mAh/g after 1000 cycles was achieved, and an excellent capacity retention was presented. The capacity was contributed by diverse electrochemical reactions and the impedance of DG-CC under different cycles was further compared. Those results provide an important reference for the structural design and stable cycle performance of pure CoCO3.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Quan Zong ◽  
Wei Du ◽  
Chaofeng Liu ◽  
Hui Yang ◽  
Qilong Zhang ◽  
...  

AbstractAmmonium vanadate with bronze structure (NH4V4O10) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH4V4O10 through heat treatment; NH4V4O10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH4V4O10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 81% over 1000 cycles at 2 A g−1. The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH4V4O10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.


RSC Advances ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 6660-6666 ◽  
Author(s):  
Jun Wang ◽  
Shengli Li ◽  
Yi Zhao ◽  
Juan Shi ◽  
Lili Lv ◽  
...  

With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries.


2021 ◽  
Author(s):  
yanhua feng ◽  
xiangxin zhang ◽  
changxin lin ◽  
qichao wang ◽  
Yining Zhang

LiNixCoyMn1-x-yO2 (x≥0.6, NCM) has attracted much attention due to its high specific capacity and energy density. However, capacity attenuation caused by Li+/Ni2+ mixing and structural instability inhibit its development and...


2020 ◽  
Vol 8 (45) ◽  
pp. 24031-24039
Author(s):  
Chenglong Liu ◽  
Qiulong Li ◽  
Hongzhao Sun ◽  
Zhen Wang ◽  
Wenbin Gong ◽  
...  

Novel MOF-derived 3D vertically stacked Mn2O3@C/CNTFs for fiber-shaped zinc-ion batteries with excellent electrochemical performance and weavability.


Sign in / Sign up

Export Citation Format

Share Document