scholarly journals Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Quan Zong ◽  
Wei Du ◽  
Chaofeng Liu ◽  
Hui Yang ◽  
Qilong Zhang ◽  
...  

AbstractAmmonium vanadate with bronze structure (NH4V4O10) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH4V4O10 through heat treatment; NH4V4O10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH4V4O10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 81% over 1000 cycles at 2 A g−1. The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH4V4O10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.

2020 ◽  
Vol 49 (40) ◽  
pp. 14115-14122
Author(s):  
Mingchen Shi ◽  
Qiang Wang ◽  
Junwei Hao ◽  
Huihua Min ◽  
Hairui You ◽  
...  

Cobalt sulfide (Co4S3) is considered as one of the most promising anode materials for lithium-ion batteries owing to its high specific capacity.


2016 ◽  
Vol 40 (10) ◽  
pp. 8202-8205 ◽  
Author(s):  
Yourong Wang ◽  
Kai Xie ◽  
Xu Guo ◽  
Wei Zhou ◽  
Guangsen Song ◽  
...  

A mesoporous nano-SiO2 anode delivers high specific capacity, good cycling stability and high Coulombic efficiency.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 6807-6813
Author(s):  
Runxia Li ◽  
Chao Guan ◽  
Xiaofei Bian ◽  
Xin Yu ◽  
Fang Hu

NaV6O15 microflowers were synthesized as a stable cathode material for aqueous zinc ion batteries, which show a high specific capacity and excellent long-term cycling performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shibin Liu ◽  
Jianwei Xu ◽  
Hongyu Zhou ◽  
Jing Wang ◽  
Xiangcai Meng

B doping plays an important role in improving the conductivity and electrochemical properties of Si anodes for Li-ion batteries. Herein, we developed a facile and massive production strategy to fabricate C-coated B-doped Si (B-Si@C) nanorod anodes using casting intermediate alloys of Al-Si and Al-B and dealloying followed by C coating. The B-Si@C nanorod anodes demonstrate a high specific capacity of 560 mAg-1, with a high initial coulombic efficiency of 90.6% and substantial cycling stability. Notably, the melting cast approach is facile, simple, and applicable to doping treatments, opening new possibilities for the development of low-cost, environmentally benign, and high-performance Li-ion batteries.


2021 ◽  
Vol 411 ◽  
pp. 128533
Author(s):  
Ting-Ting Lv ◽  
Yang-Yi Liu ◽  
Hai Wang ◽  
Sheng-Yang Yang ◽  
Chun-Sen Liu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 946
Author(s):  
Qianyi Yang ◽  
Fuqiang Lu ◽  
Yulin Liu ◽  
Yijie Zhang ◽  
Xiujuan Wang ◽  
...  

Solid electrolytes with high Li-ion conductivity and electrochemical stability are very important for developing high-performance all-solid-state batteries. In this work, Li2(BH4)(NH2) is nanoconfined in the mesoporous silica molecule sieve (SBA-15) using a melting–infiltration approach. This electrolyte exhibits excellent Li-ion conduction properties, achieving a Li-ion conductivity of 5.0 × 10−3 S cm−1 at 55 °C, an electrochemical stability window of 0 to 3.2 V and a Li-ion transference number of 0.97. In addition, this electrolyte can enable the stable cycling of Li|Li2(BH4)(NH2)@SBA-15|TiS2 cells, which exhibit a reversible specific capacity of 150 mAh g−1 with a Coulombic efficiency of 96% after 55 cycles.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingmeng Zhang ◽  
Henan Li ◽  
Shaozhuan Huang ◽  
Shuang Fan ◽  
Lingna Sun ◽  
...  

AbstractMgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc. Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated. The batteries measured in the 1 M ZnSO4−1 M MgSO4 electrolyte outplay other competitors, which deliver a high specific capacity of 374 mAh g−1 at a current density of 100 mA g−1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g−1 at 5 A g−1. This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.


2015 ◽  
Vol 3 (35) ◽  
pp. 17951-17955 ◽  
Author(s):  
Shibing Ni ◽  
Jicheng Zhang ◽  
Jianjun Ma ◽  
Xuelin Yang ◽  
Lulu Zhang

A high performance Li3VO4/N-doped C anode was successfully prepared, which shows high specific capacity and excellent cycle performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2020 ◽  
Vol 10 (10) ◽  
pp. 1697-1703
Author(s):  
Zebin Wu ◽  
Wei Zhou ◽  
Zhen Liu ◽  
Yijie Zhou ◽  
Guilin Zeng ◽  
...  

Flower-like C@V2O5 microspheres with high specific capacity were synthesized by a facile hydrothermal method. The microstructure, specific capacity and electrochemical properties of C@V2O5 microspheres were studied. Results showed that the C@V2O5 microspheres with a diameter of ∼3 m are covered over by V2O5 nanosheets, and therefore have a large surface area which is almost 5 times higher than that of pure V2O5 powders. Moreover, the initial specific capacity of C@V2O5 microsphere is as high as 247.42 mAh · g–1, and after 100 cycles, the capacity retention rate is still 99.4%. Compared with pure V2O5, flower-like C@V2O5 microspheres show higher discharge specific capacity, better rate performance and more stable cycling performance.


Sign in / Sign up

Export Citation Format

Share Document