scholarly journals Design of ultrathin hybrid membranes with improved retention efficiency of molecular dyes

RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28657-28669 ◽  
Author(s):  
Peng Liu ◽  
Charles Milletto ◽  
Susanna Monti ◽  
Chuantao Zhu ◽  
Aji P. Mathew

Nanocellulose–graphene oxide ultrathin coatings for water purification membranes with excellent swelling resistance, permeability and dyes retention are presented.

2021 ◽  
Vol 5 (6) ◽  
pp. 162
Author(s):  
Rasmeet Singh ◽  
Mandeep Singh ◽  
Nisha Kumari ◽  
Janak ◽  
Sthitapragyan Maharana ◽  
...  

Synthetic membranes are currently employed for multiple separation applications in various industries. They may have been prepared from organic or inorganic materials. Present research majorly focuses on polymeric (i.e., organic) membranes because they show better flexibility, pore formation mechanism, and thermal and chemical stability, and demand less area for installation. Dendritic, carbon nanotube, graphene and graphene oxide, metal and metal oxide, zwitter-ionic, and zeolite-based membranes are among the most promised water treatment membranes. This paper critically reviews the ongoing developments to utilize nanocomposite membranes to purify water. Various membranes have been reported to study their resistance and fouling properties. A special focus is given towards multiple ways in which these nanocomposite membranes can be employed. Therefore, this review provides a platform to develop the awareness of current research and motivate its readers to make further progress for utilizing nanocomposite membranes in water purification.


2017 ◽  
Vol 5 (39) ◽  
pp. 20860-20866 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Jung-Tsai Chen ◽  
Miao Yu

We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification.


2017 ◽  
Vol 174 ◽  
pp. 392-399 ◽  
Author(s):  
Shunli Liu ◽  
Fang Yao ◽  
Olayinka Oderinde ◽  
Zhihong Zhang ◽  
Guodong Fu

2021 ◽  
Vol 10 (2) ◽  
pp. 51-60
Author(s):  
Katarina Stepić ◽  
Radomir Ljupković ◽  
Jovana Ickovski ◽  
Aleksandra Zarubica

New and effective methods of water purification are necessary to minimize pollution. Many methods have been used in wastewater treatment, but sorption is considered as an easy and economic process. The efficiency of any sorption process mainly depends on the physicochemical properties of the used adsorbent. Since photocatalysts can initiate reactions of decomposition organic contaminants under ultraviolet or sunlight irradiation without using chemicals or producing chemical wastes, photocatalytic reactions are considered a sustainable way to remove a variety of environmental pollutants. Ultraviolet water purification became the most effective method of water disinfection and purification. Heterogeneous semiconductor photocatalysts have recently emerged as an efficient material for purifying water. The crystal structure is crucial for photocatalytic activity and efficiency of semiconductors, thus optimal parameters must be provided during the preparation of photocatalysts. To overcome problems with semiconductors usage, the use of co-catalysts and photocatalyst carriers is one of the solutions. Recently, much emphasis has been placed on using graphene oxide (GO) supported semiconductor photocatalysts. In this paper, a short review of composites of titanium dioxide and graphene oxide-based materials is given.


2018 ◽  
Vol 63 (1) ◽  
pp. 96-112 ◽  
Author(s):  
Barış Şimşek ◽  
İnci Sevgili ◽  
Özge Bildi Ceran ◽  
Haluk Korucu ◽  
Osman Nuri Şara

One of the ways of fully securing the presence of fresh water is water treatment process. Nanomaterials and nanotechnology offers an innovative solution for water treatment. In this study, physical, chemical and microbiological improvement rates of raw water were analyzed after filtration with graphene oxide. Graphene oxide's water treatment performance; silver nanoparticles, silver nanoparticles & graphene oxide composites that are commonly used in water treatment were compared with a traditional treatment method. When compared to the traditional method, there were improvements of 50 %, 40.7 %, 86.8 % and 45.5 % for color, TIC, TOC and hardness properties, respectively in water treatment by GO-based filtration with solid liquid ratio of 0.7 % (v/v). In water treatment with GO-Ag based filtration, 39.8 %, 69.8 %, 10.3 % and 28.6 % of improvements were obtained for TIC, TOC, hardness and LSI value compared to the conventional method. Both GO at 0.7 % (v/v) solid-liquid ratio and GO-Ag nanocomposites were successful in the number of total viable microorganisms and inhibiting microorganisms such as Escherichia coli fecal (gaita-infected), Salmonella typhi, Enterococcus faecalis, Pseudomona aeruginosa and Staphylococcus aureus. Among the studied parameters GO-Ag nanocomposites found to be the most suitable for drinking water treatment.


Sign in / Sign up

Export Citation Format

Share Document