scholarly journals Enhanced hydrogen evolution from water splitting based on ZnO nanosheet/CdS nanoparticle heterostructures

RSC Advances ◽  
2019 ◽  
Vol 9 (48) ◽  
pp. 28165-28170 ◽  
Author(s):  
Yinwei Wang ◽  
Hang Ping ◽  
Tiening Tan ◽  
Wenxuan Wang ◽  
Peiyan Ma ◽  
...  

ZnO nanosheet/CdS nanoparticle heterostructures were synthesized by a mild wet chemical reaction and displayed high hydrogen production with free Pt loading under visible light radiation.

2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2017 ◽  
Vol 46 (34) ◽  
pp. 11335-11343 ◽  
Author(s):  
Jiali Lv ◽  
Jinfeng Zhang ◽  
Kai Dai ◽  
Changhao Liang ◽  
Guangping Zhu ◽  
...  

Sustainable photocatalytic hydrogen evolution (PHE) of water splitting has been utilized to solve the serious environmental pollution and energy shortage problems over the last decade.


2021 ◽  
Author(s):  
Hongde Yu ◽  
Dong Wang

Photocatalytic water splitting is a promising solution to sustainable hydrogen production. Recently, conjugated covalent organic frameworks (COFs) with highly designable skeleton and inherent pores have emerged as promising photocatalysts for water splitting. However, structure-property relationships in COFs have not been established and the rational design of COFs with suitable electronic properties and chemical structures for water splitting is challenging. In this work, we proposed a facile strategy that is based on tailoring donor (D) and acceptor (A) building blocks of COFs in Lieb lattice, to achieve visible light absorption, prompt exciton dissociation, and metal-free hydrogen evolution. We constructed eight fully conjugated D-A COFs with a pyrene donor node and different acceptor edges linked by C=C and demonstrated that as compared to the D-D COF, D-A design not only shifted optical absorption to the visible and near-infrared region, but also modified band alignment to trigger overall water splitting. Moreover, the charge-transfer excitation in D-A COFs produced space-separated electrons and holes, and the exciton binding energy was substantially reduced due to increased dielectric screening in D-A COFs. Further, we found that the overpotential for hydrogen evolution reaction was suppressed by introducing hydrogen bond interactions in the hydrogen adsorption intermediate to enable metal-free catalysis. Finally, we attained five D-A COFs capable of visible-light-driven hydrogen production in neutral solution without the load of metal co-catalysts. These findings highlight a new route to design COF-photocatalysts and offer tremendous opportunities for regulating COFs towards efficient photocatalytic water splitting and other chemical transformations.


2021 ◽  
Author(s):  
Chandra Sekhar Tiwary ◽  
Partha Kumbhakar ◽  
Arko Parui ◽  
Shikha Dhakar ◽  
Manas Paliwal ◽  
...  

Developing a catalyst for green hydrogen production through water splitting, is one of the most promising ways to meet current energy demand. Here, we demonstrate spontaneous water splitting using gadolinium telluride (GdTe) with high hydrogen evolution rate. The spent catalyst can be reused after melting, which regains the original activity of the pristine sample. The phase formation and reusability are supported by the thermodynamics calculations. The theoretical calculation reveals ultra-low over-potential for hydrogen evolution reaction of GdTe caused by charge transfer from Te to Gd, hence enhancing the catalytic activity. Production of highly pure and instantaneous hydrogen by GdTe could accelerate fuel cell-based sustainable technologies.


2015 ◽  
Vol 3 (30) ◽  
pp. 15710-15714 ◽  
Author(s):  
Ming Wu ◽  
Jun-Min Yan ◽  
Xue-Wei Zhang ◽  
Ming Zhao ◽  
Qing Jiang

Ag2O/g-C3N4 shows a high hydrogen evolution rate from water splitting. It is much more efficient than g-C3N4 and Pt/g-C3N4.


2018 ◽  
Vol 42 (2) ◽  
pp. 1087-1091 ◽  
Author(s):  
Liang Luo ◽  
Mei Zhang ◽  
Pei Wang ◽  
Yuanhao Wang ◽  
Fu Wang

Nitrogen rich carbon nitride synthesized and application for photocatalytic water-splitting hydrogen production.


Author(s):  
Parul Verma ◽  
Ashish Singh ◽  
Faruk Ahamed Rahimi ◽  
Tapas Kumar Maji

Colocalization of essential molecular components in the solvated soft supramolecular assembly towards realizing visible-light-driven hydrogen evolution would be an exciting approach for sustainable energy by generating clean solar fuel. In...


Sign in / Sign up

Export Citation Format

Share Document