pristine sample
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 22)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 2155 (1) ◽  
pp. 012016
Author(s):  
V Bochkov ◽  
Yu Ponkratov ◽  
N Nikitenkov ◽  
Yu Baklanova ◽  
Yu Gordienko ◽  
...  

Abstract This paper presents a description of research works to determine the thermophysical properties of a tin-lithium alloy with a different percentage of lithium and tin atoms in the alloy. The method of differential scanning calorimetry (DSC) was used for the studies, by which the thermophysical properties of the alloy (temperature of phase transition and enthalpy) were determined. The work was carried out at the TiGrA experimental complex. Studies to determine the enthalpy and temperature of phase transition of prototypes of tin-lithium alloy were carried out in the temperature range from 150°C to 500°C at a heating rate of 10°C/min. The experiments were carried out with a pristine sample of tin (reference) and prototypes of a tin-lithium alloy, the percentage of lithium in which was 20, 25 and 27 at. %. As a result of the work performed, the melting point of the prototypes was determined, which was 224°C and 218°C. The values of the specific heat of fusion (enthalpy) of the investigated alloys were determined, which amounted to 76.5 J/g, 80.7 J/g and 86.3 J/g, respectively.


Author(s):  
Xinzhen Ji ◽  
Zhuangzhuang Ma ◽  
Xu Chen ◽  
Di Wu ◽  
Yongtao Tian ◽  
...  

Abstract Recently, non-toxic alternatives to lead-halide perovskites have been greatly sought after in optoelectronics applications. Deep-blue luminescent material is mainly required for fabricating white light source and expanding the color gamut of full-color displays. However, the synthesis of high-performance lead-free perovskite films with efficient blue emission is still a critical challenge currently, limiting their further practical applications. Here, a novel strategy is reported to prepare non-toxic and deep-blue-emitting K2CuBr3 nanocrystalline films by introducing polymer poly(methyl methacrylate) (PMMA) additives into the anti-solvent. It is found that the PMMA additives could effectively reduce the grain size and improve the crystallinity of K2CuBr3 films, resulting in an enhanced radiative recombination by defect passivation and confinement of excitons in the nanograins. As a result, the PMMA-treated K2CuBr3 films achieve a bright deep-blue light with color coordinates at (0.155, 0.042), and the photoluminescence quantum yield obtained is about 3.3 times that of the pristine sample. Moreover, the treated K2CuBr3 films exhibit a substantially enhanced stability under harsh environmental conditions, maintaining >70% of their initial performances in high humidity environment (50‒70% humidity, 190 h) or under uninterrupted ultraviolet light radiation (254 nm, 3.4 mW/cm2, 150 h). These findings pave a promising strategy for achieving efficient and stable deep-blue metal halide films, showing their potential applications in optoelectronic devices.


2021 ◽  
Author(s):  
Kanako Sakamoto ◽  
Yoshinori Takano ◽  
Hirotaka Sawada ◽  
Ryuji Okazaki ◽  
Takaaki Noguchi ◽  
...  

Abstract We report the ground-based environmental assessments during development of the sampler system until the launch of the Hayabusa2 spacecraft. We conducted static monitoring of potential contaminants to assess the environmental cleanliness during (1) laboratory work throughout the development and manufacturing of the sampler devices, (2) installation of the sampler system on the spacecraft, and (3) transportation to the launch site at the JAXA’s Tanegashima Space Center. Major elements and ions detected in our inorganic analysis were sodium (Na), potassium (K), and ionized chloride (Cl–); those were positively correlated with the total organic content and with exposure duration in the range from 101 to 103 nanogram per monitor coupon within a ~30 mm-diameter scale. We confirmed that deposits on the coupon were totally less than the microgram-scale order during manufacturing, installation, and transportation in the pre-launch phase. The present assessment yields a nominal safety declaration for sample analysis of the pristine sample (>5 g) returned from asteroid (162173) Ryugu combined with a highly clean environmental background level. We expect that the Hayabusa2-returned sample from Ryugu without severe and/or unknown contamination will allow us to provide native profiles recorded in the carbonaceous asteroid history.


2021 ◽  
Author(s):  
Chandra Sekhar Tiwary ◽  
Partha Kumbhakar ◽  
Arko Parui ◽  
Shikha Dhakar ◽  
Manas Paliwal ◽  
...  

Developing a catalyst for green hydrogen production through water splitting, is one of the most promising ways to meet current energy demand. Here, we demonstrate spontaneous water splitting using gadolinium telluride (GdTe) with high hydrogen evolution rate. The spent catalyst can be reused after melting, which regains the original activity of the pristine sample. The phase formation and reusability are supported by the thermodynamics calculations. The theoretical calculation reveals ultra-low over-potential for hydrogen evolution reaction of GdTe caused by charge transfer from Te to Gd, hence enhancing the catalytic activity. Production of highly pure and instantaneous hydrogen by GdTe could accelerate fuel cell-based sustainable technologies.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1452
Author(s):  
Indah Raya ◽  
Awais Ahmad ◽  
Ayad F. Alkaim ◽  
Dmitry Bokov ◽  
Enas R. Alwaily ◽  
...  

In this work, a simple hydrothermal method was employed to prepare a pristine sample of copper oxide (CuO) and three samples of copper oxide–graphene nanocomposites (CuO-xG) with x = 2.5, 5, and 10 mg of graphene. The synthesized samples were characterized using X-ray powder diffractometry (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV-Vis) spectroscopy. The XRD patterns of CuO-xG nanocomposites exhibited the diffraction peaks related to the crystal planes of monoclinic CuO and hexagonal graphite. The surface morphology of the prepared samples was investigated using FESEM images. EDX analysis was used to investigate the chemical composition of the synthesized samples. FTIR spectroscopy identified the vibrational modes of the covalent bonds present in the samples. The allowed direct optical bandgap energy was calculated for all prepared samples using UV-Vis absorption spectra. The small bandgap of CuO-xG nanocomposites indicates their potential use as an effective photocatalyst in the presence of visible light. Photocatalytic activity of the samples was explored for the degradation of methylene blue (MB) dye contaminant under visible light irradiation. The results showed that the CuO-5G sample has the highest photodegradation efficiency (~56%).


2021 ◽  
Vol 9 ◽  
Author(s):  
Sarah C. Finkeldei ◽  
Shirley Chang ◽  
Mihail Ionescu ◽  
Daniel Oldfield ◽  
Joel Davis ◽  
...  

We have examined the irradiation response of a titanate and zirconate pyrochlore—both of which are well studied in the literature individually—in an attempt to define the appearance of defect fluorite in zirconate pyrochlores. To our knowledge this study is unique in that it attempts to discover the mechanism of formation by a comparison of the different systems exposed to the same conditions and then examined via a range of techniques that cover a wide length scale. The conditions of approximately 1 displacement per atom via He2+ ions were used to simulate long term waste storage conditions as outlined by previous results from Ewing in a large enough sample volume to allow for neutron diffraction, as not attempted previously. The titanate sample, used as a baseline comparison since it readily becomes amorphous under these conditions behaved as expected. In contrast, the zirconate sample accumulates tensile stress in the absence of detectable strain. We propose this is analogous to the lanthanide zirconate pyrochlores examined by Simeone et al. where they reported the appearance of defect fluorite diffraction patterns due to a reduction in grain size. Radiation damage and stress results in the grains breaking into even smaller crystallites, thus creating even smaller coherent diffraction domains. An (ErNd)2(ZrTi)2O7 pyrochlore was synthesized to examine which mechanism might dominate, amorphization or stress/strain build up. Although strain was detected in the pristine sample via Synchrotron X-ray diffraction it was not of sufficient quality to perform a full analysis on.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1977
Author(s):  
Xinxin Zhi ◽  
Huasen Wang ◽  
Xinying Wei ◽  
Yan Zhang ◽  
Yuancheng An ◽  
...  

Polymeric nanofibrous membranes (NFMs) with both high whiteness and high thermal and ultraviolet (UV) stability are highly desired as reflectors for ultraviolet light-emitting diodes (UV-LEDs) devices. In the current work, a semi-alicyclic and fluoro-containing polyimide (PI) NFM with potential application in such kinds of circumstances was successfully fabricated from the organo-soluble PI resin solution via a one-step electrospinning procedure. In order to achieve the target, a semi-alicyclic PI resin was first designed and synthesized from an alicyclic dianhydride, 3,4-dicarboxy-1,2,3,4,5,6,7,8-decahydro-1-naphthalenesuccinic dianhydride (or hydrogenated tetralin dianhydride, HTDA), and a fluoro-containing diamine, 2,2-bis[4-(4-amino-phenoxy)phenyl]hexafluoropropane (BDAF), via an imidization procedure. The derived PI (HTDA-BDAF) resin possessed a number-average molecular weight (Mn) higher than 33,000 g/mol and was highly soluble in polar aprotic solvents, such as N,N-dimethylacetamide (DMAc). The electrospinning solution was prepared by dissolving the PI resin in DMAc at a solid content of 25–35 wt%. For comparison, the conventional high-whiteness polystyrene (PS) NFM was prepared according to a similar electrospinning procedure. The thermal and UV stability of the derived PI and PS NFMs were investigated by exposure under the UV-LED (wavelength: 365 nm) irradiation. Various thermal evaluation results indicated that the developed PI (HTDA-BDAF) NFM could maintain both the high reflectance and high whiteness at elevated temperatures. For example, after thermal treatment at 200 °C for 1 h in air, the PI (HTDA-BDAF) NFM exhibited a reflectance at a wavelength of 457 nm (R457) of 89.0%, which was comparable to that of the pristine PI NMF (R457 = 90.2%). The PI (HTDA-BDAF) NFM exhibited a whiteness index (WI) of 90.88, which was also close to that of the pristine sample (WI = 91.22). However, for the PS NFM counterpart, the R457 value decreased from the pristine 88.4% to 18.1% after thermal treatment at 150 °C for 1 h, and the sample became transparent. The PI NFM maintained good optical and mechanical properties during the high dose (2670 J/cm2) of UV exposure, while the properties of the PS NFM apparently deteriorated under the same UV aging.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3267
Author(s):  
Sunil Ghimire ◽  
Marcin Kończykowski ◽  
Kyuil Cho ◽  
Makariy A. Tanatar ◽  
Daniele Torsello ◽  
...  

Static (DC) and dynamic (AC, at 14 MHz and 8 GHz) magnetic susceptibilities of single crystals of a ferromagnetic superconductor, EuFe2(As1−xPx)2 (x = 0.23), were measured in pristine state and after different doses of 2.5 MeV electron or 3.5 MeV proton irradiation. The superconducting transition temperature, Tc(H), shows an extraordinarily large decrease. It starts at Tc(H=0)≈24K in the pristine sample for both AC and DC measurements, but moves to almost half of that value after moderate irradiation dose. Remarkably, after the irradiation not only Tc moves significantly below the FM transition, its values differ drastically for measurements at different frequencies, ≈16 K in AC measurements and ≈12 K in a DC regime. We attribute such a large difference in Tc to the appearance of the spontaneous internal magnetic field below the FM transition, so that the superconductivity develops directly into the mixed spontaneous vortex-antivortex state where the onset of diamagnetism is known to be frequency-dependent. We also examined the response to the applied DC magnetic fields and studied the annealing of irradiated samples, which almost completely restores the superconducting transition. Overall, our results suggest that in EuFe2(As1−xPx)2 superconductivity is affected by local-moment ferromagnetism mostly via the spontaneous internal magnetic fields induced by the FM subsystem. Another mechanism is revealed upon irradiation where magnetic defects created in ordered Eu2+ lattice act as efficient pairbreakers leading to a significant Tc reduction upon irradiation compared to other 122 compounds. On the other hand, the exchange interactions seem to be weakly screened by the superconducting phase leading to a modest increase of Tm (less than 1 K) after the irradiation drives Tc to below Tm. Our results suggest that FM and SC phases coexist microscopically in the same volume.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 973
Author(s):  
Athar N. Akhtar ◽  
G. Murtaza ◽  
M. Ahsan Shafique ◽  
Ahmed S. Haidyrah

In this work, the effect of ion bombardment on the optical properties of Polymethylmethacrylate (PMMA) was studied. Polymer samples were implanted with 500 keV Cu+ ions with a fluence ranging from 1 × 1012 to 1 × 1014 ions/cm2. X-ray Diffractometer (XRD) study indicated a relatively lower variation with a higher dose of ions. Fourier Transform Infrared (FTIR) spectra exhibited that with the implantation of Cu ions the intensity of existing bands decreases, while the result confirms the existence of a C=C group. The pristine and ion-implanted samples were also investigated using photoluminescence (PL) and Ultra Violet-Visible (UV-VIS) spectra. The optical band gap (Eg) was observed up to 3.05 eV for the implanted samples, while the pristine sample exhibited a wide energy-gap up to ~3.9 eV. The change in the optical gap indicated the presence of a gradual phase transition for the polymer blends. The dielectric measurements of the pristine and Cu-implanted PMMA were investigated in the 10 Hz to 2 GHz frequency range. It was found that the implanted samples showed a significant decrease in the value of the dielectric constant. The value of the dielectric constant and dielectric loss of the PMMA and Cu-implanted samples at a 1-kHz frequency were found to be ~300 and 29, respectively. The modification of the PMMA energy bandgap in the current research suggested the potential use of Cu implanted PMMA in the field of optical communications and flexible electronic devices.


2021 ◽  
Author(s):  
Sneha Pravin Kandare ◽  
V. N. Bhoraskar ◽  
A. B . Phatangare ◽  
Rekha Rao ◽  
Mala Rao ◽  
...  

Abstract Microwave synthesized nano sized Cu2ZnSnS4 (CZTS) powder was irradiated with 6 MeV electrons, to investigate stability under radiation. The structural, optical, vibrational and morphological properties were explored using X-ray diffraction, UV-Visible spectroscopy, Raman spectroscopy and Scanning Electron Microscope (SEM).The irradiated sample shows significant change in properties when compared to the pristine sample. X ray peak broadening analysis has been used to estimate the crystallite size and lattice strain. Raman spectroscopy analysis confirms the transition of ordered kesterite to disordered kesterite phase after electron irradiation at electron fluence of 4 x1015 e-/cm2. CZTS nano-particles having hierarchical flower like morphology starts agglomerating after electron irradiation as observed from SEM images. The sample did not amorphize upto the highest fluence 4 x 1015 e-/cm2 employed in this study.


Sign in / Sign up

Export Citation Format

Share Document