scholarly journals Visible-light photooxidation in water by 1O2-generating supramolecular hydrogels

2020 ◽  
Vol 11 (16) ◽  
pp. 4239-4245 ◽  
Author(s):  
Sankarsan Biswas ◽  
Mohit Kumar ◽  
Andrew M. Levine ◽  
Ian Jimenez ◽  
Rein V. Ulijn ◽  
...  

An aqueous photocatalytic system exploits photophysical properties arising from the formation of supramolecular hydrogels, with properties and assembly modulated by the amino acids appended to an organic chromophore.

2020 ◽  
Vol 01 ◽  
Author(s):  
Diana Sannino ◽  
Vincenzo Vaiano ◽  
Olga Sacco ◽  
Nicola Morante ◽  
Luca De Guglielmo ◽  
...  

Aims: The aim of this work was to investigate the impact of light modulation parameters on the degradation of terephtalic acid, an organic model pollutant, within a heterogeneous photocatalytic system under visible light. For this purpose, a fixed bed photocatalytic reactor, irradiated by white-light LEDs matrix controlled by a system for light dimming, was used. The bed consisted of a nitrogen-doped titania photocatalyst deposited on polystyrene pellets. Background: Wastewater containing TPA can be treated into conventional aerobic biological units. However, the mineralization of TPA is slow and inefficient and its presence influences negatively the biodegradation efficiency because this pollutant inhibits microbial growth. Nowadays innovative technologies named advanced oxidation processes (AOPs), such as heterogeneous photocatalysis with UV and visible light, ozonation, Fenton oxidation have gained popularity for effective organic destruction of TPA from wastewater. The heterogeneous photocatalytic oxidation process of the TPA under visible light is the most advantageous process in terms of both fixed and operating costs. Objective: In this work the successful application of light modulation techniques to degradation of TPA using a photocatalytic system with supported visible active photocatalysts (N-doped TiO2) immobilized on polystyrene pellets was reported. In particular, sinusoidal lighting has been used analyzing the influence of the period of oscillation and the amplitude of the light modulation on the reaction kinetics, in such a way as to minimize the times and energy costs for the process. Methods: To evaluate the influence of light modulation on the efficiency of the TPA removal, a discontinuous system composed by a Recirculating Photocatalytic Fixed Bed Reactor (RPFBR) irradiated by a matrix of white light LEDs was used. The flat geometry of photoreactor guarantees the efficient excitation of photocatalyst. An amount of 250 mL of aqueous solution with initial TPA concentration of 12.5 ppm was applied in the photocatalytic tests lasting 180 min of irradiation fixed or sinusoidal modulated. Results: The results show that the variation of the oscillation period of the sinusoidal modulation has a relevant influence on the photodegradation of TPA and a maximum value of the apparent kinetic constant, 0.0045 min-1 is found when the period of oscillation is 0.24 s. The sinusoidal modulation with optimal amplitude is that with current between 50-200 mA, that shows the highest value of the apparent kinetic constant, equal to 0.0046 min-1. The optimal sinusoidal modulation, as a consequence is with current between 50-200 mA and period of 0.24 s. From the data collected from the tests, it is possible to evaluate the energy cost necessary to obtain the reduction of 90% of the terephthalic acid in 1 m3 of polluted water for each modulation (E E/O ), and compare these values with other tests for TPA degradation reported in the literature. The internal comparison and with the three systems of literature showed the optima sinusoidal modulation of LEDs matrix permits a strong reduction the electrical energy consumption. Conclusion: Photocatalytic tests have demonstrated the improvement of the process energy efficiency using the light modulation technique . A further confirmation of the advantage of light modulation was obtained by comparing the energy costs required for the abatement of 90% of the terephthalic acid in 1m 3 of the photocatalytic system. Finally, a mathematical model for photocatalytic degradation of terephthalic acid within the recirculating fixed bed photocatalytic reactor, irradiated by white-light LEDs was developed.


2019 ◽  
Vol 15 ◽  
pp. 2013-2019 ◽  
Author(s):  
Esther Nieland ◽  
Oliver Weingart ◽  
Bernd M Schmidt

ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.


2021 ◽  
Author(s):  
Yifan Li ◽  
Changhui Dai ◽  
Shentong Xie ◽  
Ping Liu ◽  
Peipei Sun
Keyword(s):  

2012 ◽  
Vol 116 (36) ◽  
pp. 11098-11102 ◽  
Author(s):  
Atsuko Y. Nosaka ◽  
Goro Tanaka ◽  
Yoshio Nosaka

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3331
Author(s):  
Ekaterina Kolesova ◽  
Anastasia Bulgakova ◽  
Vladimir Maslov ◽  
Andrei Veniaminov ◽  
Aliaksei Dubavik ◽  
...  

Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.


2015 ◽  
Vol 51 (96) ◽  
pp. 17144-17147 ◽  
Author(s):  
Fenfen Shi ◽  
Linlin Chen ◽  
Min Chen ◽  
Deli Jiang

Nanocarbon could be used as an electron mediator to construct a Z-scheme photocatalytic system with enhanced charge separation efficiency.


2013 ◽  
Vol 295-298 ◽  
pp. 1434-1437
Author(s):  
Dong Dong Zhang ◽  
Rong Liang Qiu ◽  
Xiong Fei Huang

Here we report the photocatalytic degradation characteristics of Rhodamine B in the presence of Cr(VI). Some interesting results were observed during the photocatalytic process. Cr(VI) caused a deactivation effect on the catalyst due to the formation of Cr(OH)3precipitate blocking the active sites of catalyst. Moreover, a kind of red oligomer precipitate was found during the RhB degradation when Cr(VI) was presented. This precipitate was rarely reported in photocatalytic system.


Author(s):  
Jorge Aguilera ◽  
Víctor García-González ◽  
Manuel Alatorre-Meda ◽  
Eustolia Rodríguez-Velázquez ◽  
Ignacio Rivero

In this work, we explored the synthesis of 4,4-difluoro-4-bora-3a,4a-diazas-indacene (BODIPYs) bound to five different amino acids (BODIPY-FAA) (glycine, alanine, leucine, phenylalanine, and tyrosine) (amino group is kept protected with fluorophore Fmoc) and evaluated these conjugates in terms of (i) their photophysical properties and (ii) their potential application as cell staining agents of suspension and adherent cells at healthy and stress conditions. In general, all synthesized BODIPY-FAA (3a-3e) were found to emit fluorescence in the blue and green regions of the spectrum (depending on the solvent conditions). However, BODIPY-FTyr(trt) (3e) showed the best molar extinction coefficient (ε = 28,198 M-1 cm-1) and quantum yield (Φ = 0.17). Biologically speaking, all synthesized conjugates demonstrated a selective affinity for the cytoplasm of Langerhans β-cells employed as a model, being the BODIPY-FLeu conjugate the one displaying the highest observed intensity. As such, our results reveal the BODIPY-FAA as a novel attractive tool for the specific staining of the cell cytoplasm, demonstrating not only a dual fluorescence emission but also a sensing capability to recognize different cell states.


Sign in / Sign up

Export Citation Format

Share Document