scholarly journals Linear and nonlinear mechanical responses can be quite different in models for biological tissues

Soft Matter ◽  
2020 ◽  
Vol 16 (7) ◽  
pp. 1850-1856 ◽  
Author(s):  
Preeti Sahu ◽  
Janice Kang ◽  
Gonca Erdemci-Tandogan ◽  
M. Lisa Manning

The fluidity of biological tissues – whether cells can change neighbors and rearrange – is important for their function.

2017 ◽  
Vol 50 (17) ◽  
pp. 6369-6384 ◽  
Author(s):  
Mathieu Tauban ◽  
Jean-Yves Delannoy ◽  
Paul Sotta ◽  
Didier R. Long

2002 ◽  
Vol 282 (6) ◽  
pp. H2427-H2440 ◽  
Author(s):  
Christian A. J. Schulze-Bauer ◽  
Peter Regitnig ◽  
Gerhard A. Holzapfel

Adventitial mechanics were studied on the basis of adventitial tube tests and associated stress analyses utilizing a thin-walled model. Inflation tests of 11 nonstenotic human femoral arteries (79.3 ± 8.2 yr, means ± SD) were performed during autopsy. Adventitial tubes were separated anatomically and underwent cyclic, quasistatic extension-inflation tests using physiological pressures and high pressures up to 100 kPa. Associated circumferential and axial stretches were typically <20%, indicating “adventitiosclerosis.” Adventitias behaved nearly elastically for both loading domains, demonstrating high tensile strengths (>1 MPa). The anisotropic and strongly nonlinear mechanical responses were represented appropriately by two-dimensional Fung-type stored-energy functions. At physiological pressure (13.3 kPa), adventitias carry ∼25% of the pressure load in situ, whereas their circumferential and axial stresses were similar to the total wall stresses (∼50 kPa in both directions), supporting a “uniform stress hypothesis.” At higher pressures, they became the mechanically predominant layer, carrying >50% of the pressure load. These significant load-carrying capabilities depended strongly on circumferential and axial in-vessel prestretches (mean values: 0.95 and 1.08). On the basis of these results, the mechanical role of the adventitia at physiological and hypertensive states and during balloon angioplasty was characterized.


2018 ◽  
Vol 18 (03) ◽  
pp. 1750100 ◽  
Author(s):  
ARNAB CHANDA ◽  
ZACHARY FLYNN ◽  
VINU UNNIKRISHNAN

In the recent years, poorly evaluated gynecological surgeries and urogynecological mesh implantations have been affecting millions of women in the US and across the globe. These failed surgeries could be mainly attributed to the nonavailability of vaginal tissues (due to ethical and biosafety issues), which does not allow any experimental testing of operation and mesh implantation techniques before an actual surgery. A surrogate which behaves biomechanically like the human vaginal tissue would be indispensable for simulating surgical suture of vaginal tissues in prolapse surgery, hysterectomy or surgery during traumatic child births (such as Cesarean). Also, vaginal tissue surrogates simulating the various prolapse conditions (such as vaginal tissue stiffening) would be very useful to evaluate tissue modifications due to prolapse, and also mesh and vaginal tissue interactions. In the current work, a low cost four-part silicone-based material was developed, which precisely simulates the linear and nonlinear mechanical behavior of the normal human vaginal tissue. Additionally, a range of four-part silicone-based novel materials were developed which precisely mimics the mechanical behavior of stiffened vaginal tissues at different degrees of prolapse. The linear and nonlinear mechanical behavior of all such novel materials were characterized using elastic and hyperelastic formulations. Such precisely characterized normal and prolapsed vaginal tissue surrogates have not been developed anywhere to date as per the best of our knowledge and would be clinically helpful for gynecological surgical planning in the future.


Soft Matter ◽  
2014 ◽  
Vol 10 (36) ◽  
pp. 7051-7060 ◽  
Author(s):  
Daniel B. Allan ◽  
Daniel M. Firester ◽  
Victor P. Allard ◽  
Daniel H. Reich ◽  
Kathleen J. Stebe ◽  
...  

Microrheology tracks the evolution in the linear and nonlinear mechanical properties of layers of the protein lysozyme adsorbing at the air–water interface as the layers undergo a viscoelastic transition.


Sign in / Sign up

Export Citation Format

Share Document