mechanical waves
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 74)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ivo Čáp ◽  
Klára Čápová ◽  
Milan Smetana ◽  
Štefan Borik
Keyword(s):  


2021 ◽  
Author(s):  
Ivo Čáp ◽  
Klára Čápová ◽  
Milan Smetana ◽  
Štefan Borik

The textbook deals with the analysis of oscillations, mechanical and electromagnetic waves and their use in medicine. The individual chapters are based on the theoretical foundations of the issue and describe the use of relevant disciplines in medical practice. The chapter on oscillations is a starting point for explaining the basic principles of waves and focuses on explaining the nature of magnetic resonance. The chapter on mechanical waves explains the nature and properties of sound, infrasound, ultrasound, and medical applications, such as lithotripsy or ultrasonography. The chapter on electromagnetic waves discusses their basic principles, origin and properties, and applications of individual frequency bands from long wavelengths to gamma radiation in therapy and diagnostics. The chapter on wave manifestations explains phenomena such as interference and diffraction and their use in applications such as optical imaging systems, holography, virtual reality, etc. The description complements the explanation of the quantum properties of radiation, which are essential for understanding applications such as laser scalpel, fluorescence microscopy, spectroscopy, generation and detection of X-rays and gamma rays. Special attention is paid to the perception of EM waves by the human eye and the perception of sound by the human ear.


Author(s):  
Fernando Zvietcovich ◽  
Kirill V Larin

Abstract After ten years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and, perhaps, one of the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and improving medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion of current challenges and future directions, including clinical translation research.


Author(s):  
Annette Caenen ◽  
Mathieu Pernot ◽  
Kathryn R Nightingale ◽  
Jens-Uwe Voigt ◽  
Hendrik J Vos ◽  
...  

Abstract Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.


2021 ◽  
Vol 140 (6) ◽  
pp. 532-537
Author(s):  
R.A. Méndez-Sánchez ◽  
A.E. Terán-Juárez ◽  
A.M. Martínez-Argüello ◽  
E. Flores-Olmedo ◽  
G. Báez ◽  
...  

2021 ◽  
Author(s):  
Ze Gong ◽  
Koen van den Dries ◽  
Alessandra Cambi ◽  
Vivek Shenoy

Immune cells, such as macrophages and dendritic cells, can utilize podosomes, actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. In these cells, individual podosomes exhibit periodic protrusion and retraction cycles (vertical oscillations) to probe their microenvironment, while multiple podosomes arranged in clusters demonstrate coordinated wave-like spatiotemporal dynamics. However, the mechanisms governing both the individual vertical oscillations and the coordinated oscillation waves in clusters remain unclear. By integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for both the oscillatory growth of individual podosomes and wave-like dynamics in clusters. Our model reveals that podosomes show oscillatory growth when the actin polymerization-associated protrusion and the signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers within the cluster drives mesoscale coordination of individual podosome oscillations in an apparent wave-like fashion. Our model predicts the influence of different pharmacological treatments targeting myosin activity, actin polymerization, and mechanosensitive pathways, as well as the impact of the microenvironment stiffness on the wavelengths, frequencies, and speeds of the chemo-mechanical waves. Overall, our integrated theoretical and experimental approach reveals how collective wave dynamics arise due to the coupling between chemo-mechanical signaling and actin diffusion, shedding light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.


Healthcare ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1603
Author(s):  
Marta Benítez Martínez ◽  
David Baeza Moyano ◽  
Roberto Alonso González-Lezcano

A cataract is defined as opacity of the crystalline lens. It is currently one of the most prevalent ocular pathologies and is generally associated with aging. The most common treatment for cataracts is surgery. Cataract surgery is a quick and painless process, is very effective, and has few risks. The operation consists of removing the opacified lens and replacing it with an intraocular lens. The most common intraocular lens removal procedure that is currently used is phacoemulsification. The energy applied in this process is generated by ultrasonic waves, which are mechanical waves with a frequency higher than 20 kHz. A great deal of research on the different ways to perform the stages of this surgical procedure and the analysis of the possible side effects of the operation has been published, but there is little information on the technical characteristics, the intensities applied, and the use of ultrasound-emitting (U/S) equipment for cataract removal. More studies on the method and depth of absorption of ultrasonic waves in our visual system when performing the phacoemulsification procedure are needed. It would be advisable for health authorities and medical professionals to develop guidelines for the handling and use of ultrasonic wave-emitting equipment, such as those that exist for ultrasound and physiotherapy. This could help us to reduce undesirable effects after the operation.


Author(s):  
Hesham A. Abu Zaid ◽  
◽  
Sherif A. Akl ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
...  

The mechanical waves have been used as an unconventional enhanced oil recovery technique. It has been tested in many laboratory experiments as well as several field trials. This paper presents a robust forecasting model that can be used as an effective tool to predict the reservoir performance while applying seismic EOR technique. This model is developed by extending the wave induced fluid flow theory to account for the change in the reservoir characteristics as a result of wave application. A MATLAB program was developed based on the modified theory. The wave’s intensity, pressure, and energy dissipation spatial distributions are calculated. The portion of energy converted into thermal energy in the reservoir is assessed. The changes in reservoir properties due to temperature and pressure changes are considered. The incremental oil recovery and reduction in water production as a result of wave application are then calculated. The developed model was validated against actual performance of Liaohe oil field. The model results show that the wave application increases oil production from 33 to 47 ton/day and decreases water-oil ratio from 68 to 48%, which is close to the field measurements. A parametric analysis is performed to identify the important parameters that affect reservoir performance under seismic EOR. In addition, the study determines the optimum ranges of reservoir properties where this technique is most beneficial.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2902
Author(s):  
Ahmed E. Abouelregal ◽  
Marin Marin ◽  
Sameh S. Askar

The current study investigates thermophotovoltaic interactions using a new mathematical model of thermoelasticity established on a modification of the Green–Naghdi model of type III (GN-III). The basic equations, in which the heat transfer is in the form of the Moore–Gibson–Thompson (MGT) equation, are derived by adding a single delay factor to the GN-III model. The impact of temperature and electrical elastic displacement of semiconductors throughout the excited thermoelectric mechanism can be studied theoretically using this model. The proposed model was used to investigate the interactions between the processes of thermoelastic plasma in a rotating semiconductor solid sphere that was subjected to a thermal shock and crossed to an externally applied magnetic field. The influence of rotation parameters on various photothermal characteristics of silicon solid was presented and explored using the Laplace technique.


Sign in / Sign up

Export Citation Format

Share Document