A novel supramolecular AIE π-gel for fluorescence detection and separation of metal ions from aqueous solution

Soft Matter ◽  
2019 ◽  
Vol 15 (32) ◽  
pp. 6530-6535 ◽  
Author(s):  
Tai-Bao Wei ◽  
Qin-Peng Zhang ◽  
Yan-Qing Fan ◽  
Peng-Peng Mao ◽  
Jiao Wang ◽  
...  

A novel supramolecular AIE π-gel (ONT) is constructed using a π–π stacking interaction and hydrogen bonding interaction, which could efficiently detect and separate metal ions.

RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 48884-48895 ◽  
Author(s):  
Haochi Liu ◽  
Ligang Chen ◽  
Jie Ding

The mechanisms of interactions such as electrostatic interaction, hydrogen bonding, and π–π stacking interaction were discussed for the adsorption of cationic and anionic dyes onto magnetic NH2-MIL-101(Al).


2020 ◽  
Author(s):  
Hossein Khalilian ◽  
Gino A. DiLabio

Here, we report an exquisite strategy that the B12 enzymes exploit to manipulate the reactivity of their radical intermediate (Adenosyl radical). Based on the quantum-mechanic calculations, these enzymes utilize a little known long-ranged through space quantum Coulombic effect (QCE). The QCE causes the radical to acquire an electronic structure that contradicts the Aufbau Principle: The singly-occupied molecular orbital (SOMO) is no longer the highest-occupied molecular orbital (HOMO) and the radical is unable to react with neighbouring substrates. The dynamic nature of the enzyme and its structure is expected to be such that the reactivity of the radical is not restored until it is moved into close proximity of the target substrate. We found that the hydrogen bonding interaction between the nearby conserved glutamate residue and the ribose ring of Adenosyl radical plays a crucial role in manipulating the orbital ordering


2020 ◽  
Author(s):  
Hossein Khalilian ◽  
Gino A. DiLabio

Here, we report an exquisite strategy that the B12 enzymes exploit to manipulate the reactivity of their radical intermediate (Adenosyl radical). Based on the quantum-mechanic calculations, these enzymes utilize a little known long-ranged through space quantum Coulombic effect (QCE). The QCE causes the radical to acquire an electronic structure that contradicts the Aufbau Principle: The singly-occupied molecular orbital (SOMO) is no longer the highest-occupied molecular orbital (HOMO) and the radical is unable to react with neighbouring substrates. The dynamic nature of the enzyme and its structure is expected to be such that the reactivity of the radical is not restored until it is moved into close proximity of the target substrate. We found that the hydrogen bonding interaction between the nearby conserved glutamate residue and the ribose ring of Adenosyl radical plays a crucial role in manipulating the orbital ordering


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1737 ◽  
Author(s):  
Marisela Martinez-Quiroz ◽  
Xiomara E. Aguilar-Martinez ◽  
Mercedes T. Oropeza-Guzman ◽  
Ricardo Valdez ◽  
Eduardo A. Lopez-Maldonado

This paper presents the synthesis and evaluation of physicochemical behavior of a new series of N-alkyl-bis-o-aminobenzamides (BOABs) in aqueous solution. The study was targeted to the complexing capacity of five metal ions (Fe2+, Cu2+, Cd2+, Hg2+ and Pb2+) of environmental concern as the medullar principle of a liquid phase sensor for its application in the determination of these metal ions due to its versatility of use. Molecular fluorescence, UV-visible and Zeta potential were measured for five BOABs and the effect of alkyl groups with different central chain length (n = 3, 4, 6, 8 and 10) on physicochemical performance determined. The results have shown that these derivatives present higher sensibility and selectivity for Cu2+ even in the presence of the other metal ions. An additional application test was done adding a pectin (0.1 wt %) solution to the BOAB-Cu+2 complex to obtain a precipitate (flocs) as a potential selective separation process of Cu from aqueous solution. The solid was then lyophilized and analyzed by SEM-EDS, the images showed spheric forms containing Cu+2 with diameter of approximately of 8 μm and 30 wt %.


Sign in / Sign up

Export Citation Format

Share Document