Detection of stress in polymers: mechanochemical activation of CuAAC click reactions in poly(urethane) networks

Soft Matter ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1137-1141 ◽  
Author(s):  
Michel Biewend ◽  
Philipp Michael ◽  
Wolfgang H. Binder

We report on copper(i)-bis(N-heterocyclic carbene)s (NHC) for quantitative stress-sensing. This mechanophore is embedded within a polyurethane network, triggering a fluorogenic copper(i) azide alkyne cycloaddition (CuAAC) of 8-azido-2-naphtol and 3-hydroxy phenylacetylene.

2019 ◽  
Vol 58 (37) ◽  
pp. 12919-12923 ◽  
Author(s):  
Deniz Yildiz ◽  
Christoph Baumann ◽  
Annabel Mikosch ◽  
Alexander J. C. Kuehne ◽  
Andreas Herrmann ◽  
...  

2020 ◽  
Author(s):  
Chaoming Fang ◽  
Yixuan Wang ◽  
Shuo Gao

In order to quantify the manipulation process of acupuncture, in this article, a piezoelectric glove based wearable stress sensing system is presented. Served as the sensitive element with small volume and high tensile resistance, PVDF greatly meet the need of quantitative analysis. Through piezoelectric force sensing glove, the system is capable of detecting both perpendicular stress as well as shear stress. Besides, key parameters including peak stress at needle are detected and extracted, potentially allowing for a higher learning efficiency hence advancing the development of acupuncture.


2013 ◽  
Author(s):  
Yasushi Takano ◽  
Jiro Hashiba ◽  
Rintaro Anraku ◽  
Ryuichi Sato ◽  
Sakae Mizuki ◽  
...  

2018 ◽  
Vol 25 (5) ◽  
pp. 636-658 ◽  
Author(s):  
Jan Pokorny ◽  
Lucie Borkova ◽  
Milan Urban

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kathrin Ulrich ◽  
Blanche Schwappach ◽  
Ursula Jakob

AbstractThiol-based redox switches evolved as efficient post-translational regulatory mechanisms that enable individual proteins to rapidly respond to sudden environmental changes. While some protein functions need to be switched off to save resources and avoid potentially error-prone processes, protective functions become essential and need to be switched on. In this review, we focus on thiol-based activation mechanisms of stress-sensing chaperones. Upon stress exposure, these chaperones convert into high affinity binding platforms for unfolding proteins and protect cells against the accumulation of potentially toxic protein aggregates. Their chaperone activity is independent of ATP, a feature that becomes especially important under oxidative stress conditions, where cellular ATP levels drop and canonical ATP-dependent chaperones no longer operate. Vice versa, reductive inactivation and substrate release require the restoration of ATP levels, which ensures refolding of client proteins by ATP-dependent foldases. We will give an overview over the different strategies that cells evolved to rapidly increase the pool of ATP-independent chaperones upon oxidative stress and provide mechanistic insights into how stress conditions are used to convert abundant cellular proteins into ATP-independent holding chaperones.


Sign in / Sign up

Export Citation Format

Share Document