A polyoxometalate-based polymer electrolyte with an improved electrode interface and ion conductivity for high-safety all-solid-state batteries

2019 ◽  
Vol 7 (26) ◽  
pp. 15924-15932 ◽  
Author(s):  
Xiangfei Yuan ◽  
Cui Sun ◽  
Jia-Ning Duan ◽  
Jingmin Fan ◽  
Ruming Yuan ◽  
...  

By combining inorganic LVC with organic PEO matrix, a polyoxometalate-based polymer electrolyte (PPE) was constructed for solid state batteries.

2021 ◽  
Vol 8 ◽  
Author(s):  
Qiongyu Zhou ◽  
Songli Liu ◽  
Shiju Zhang ◽  
Yong Che ◽  
Li-Hua Gan

Compared with the fagile ceramic solid electrolyte, Li-ion conducting polymer electrolytes are flexible and have better contact with electrodes. However, the ionic conductivity of the polymer electrolytes is usually limited because of the slow segment motion of the polymer. In this work, we introduce porous Co3O4 cuboids to Poly (Ethylene Oxide)-based electrolyte (PEO) to investigate the influence of these cuboids on the ionic conductivity of the composite electrolyte and the performance of the all-solid-state batteries. The experiment results showed the porous cuboid Co3O4 fillers not only break the order motion of segments of the polymer to increase the amorphous phase amount, but also build Li+ continuous migration pathway along the Co3O4 surface by the Lewis acid-base interaction. The Li+ conductivity of the composite polymer electrolyte reaches 1.6 × 10−4 S cm−1 at 30°C. The good compatibility of the composite polymer electrolyte to Li metal anode and LiFePO4 cathode ensures good rate performance and long cycle life when applying in an all-solid-state LiFePO4 battery. This strategy points out the direction for developing the high-conducting composite polymer electrolytes for all-solid-state batteries.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Atsutaka Kato ◽  
Mari Yamamoto ◽  
Futoshi Utsuno ◽  
Hiroyuki Higuchi ◽  
Masanari Takahashi

AbstractDue to their high conductivity and interface formability, sulfide electrolytes are attractive for use in high energy density all-solid-state batteries. However, electrode volume changes during charge-discharge cycling typically cause mechanical contact losses at the electrode/electrolyte interface, which leads to capacity fading. Here, to suppress this contact loss, isolated PS43- anions are reacted with iodine to prepare a sulfide polymer electrolyte that forms a sticky gel during dispersion in anisole and drying of the resulting supernatant. This polymer, featuring flexible (–P–S–S–)n chains and enhanced solubility in anisole, is applied as a lithium-ion-conductive binder in sheet-type all-solid-state batteries, creating cells with low resistance and high capacity retention.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 16-21
Author(s):  
Linsheng Wang

A lithium superionic conductor of Li10GeP2S12 that exhibits the highest lithium ionic conductivity among the sulfide electrolytes and the most promising oxide electrolytes, namely, Li6.6La3Sr0.06Zr1.6Sb0.4O12 and Li6.6La3Zr1.6Sb0.4O12, are successfully synthesized. Novel hybrid electrolytes with a weight ratio of Li6.6La3Zr1.6Sb0.4O12 to Li10GeP2S12 from 1/1 to 1/3 with the higher Li-ion conductivity than that of the pure Li10GeP2S12 electrolyte are developed for the fabrication of the advanced all-solid-state Li batteries.


2020 ◽  
Vol 56 (3) ◽  
pp. 2425-2434
Author(s):  
Bing Huang ◽  
Biyi Xu ◽  
Jingxi Zhang ◽  
Zhihong Li ◽  
Zeya Huang ◽  
...  

2015 ◽  
Vol 3 (40) ◽  
pp. 20338-20344 ◽  
Author(s):  
Lincoln J. Miara ◽  
Naoki Suzuki ◽  
William D. Richards ◽  
Yan Wang ◽  
Jae Chul Kim ◽  
...  

Li9S3N is a novel Li–metal barrier coating for all-solid-state batteries. The conductivity is greatly improved by substitution.


Sign in / Sign up

Export Citation Format

Share Document