Localized high concentration electrolyte behavior near a lithium–metal anode surface

2019 ◽  
Vol 7 (43) ◽  
pp. 25047-25055 ◽  
Author(s):  
Yu Zheng ◽  
Fernando A. Soto ◽  
Victor Ponce ◽  
Jorge M. Seminario ◽  
Xia Cao ◽  
...  

Fast decomposition of a localized high concentration electrolyte results in the formation of a thin film constituted by atomic species from the anion and in part from the diluent that is the key for cell stability.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


2015 ◽  
Vol 119 (48) ◽  
pp. 26828-26839 ◽  
Author(s):  
Luis E. Camacho-Forero ◽  
Taylor W. Smith ◽  
Samuel Bertolini ◽  
Perla B. Balbuena

Author(s):  
Cheng-dong Wei ◽  
Hong-tao Xue ◽  
Zhou Li ◽  
Qin-shan Zhao ◽  
Wen-xiang Li ◽  
...  

Small Methods ◽  
2021 ◽  
pp. 2001035
Author(s):  
Zhiyuan Han ◽  
Chen Zhang ◽  
Qiaowei Lin ◽  
Yunbo Zhang ◽  
Yaqian Deng ◽  
...  

2021 ◽  
Author(s):  
Yuping Wu ◽  
Xiaosong Xiong ◽  
Ruoyu Zhi ◽  
Qi Zhou ◽  
Wenqi Yan ◽  
...  

Metallic lithium is an promising next generation electrode material due to its ultrahigh specific capacity and the lowest potential. However, short cycling lifespan and safety hazards have hindered the practical...


Sign in / Sign up

Export Citation Format

Share Document