scholarly journals Binary PMMA/PVDF blend film modified substrate enables superior lithium metal anode for lithium batteries

2021 ◽  
Author(s):  
Yuping Wu ◽  
Xiaosong Xiong ◽  
Ruoyu Zhi ◽  
Qi Zhou ◽  
Wenqi Yan ◽  
...  

Metallic lithium is an promising next generation electrode material due to its ultrahigh specific capacity and the lowest potential. However, short cycling lifespan and safety hazards have hindered the practical...

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mao Yang ◽  
Nan Jue ◽  
Yuanfu Chen ◽  
Yong Wang

AbstractUniform migration of lithium (Li) ions between the separator and the lithium anode is critical for achieving good quality Li deposition, which is of much significance for lithium metal battery operation, especially for Li–sulfur (Li–S) batteries. Commercial separators such as polypropylene or polyethylene can be prepared by wet or dry processes, but they can indeed cause plentiful porosities, resulting in the uneven Li ion stripping/plating and finally the formation of Li dendrites. Thence, we constructed an atomic interlamellar ion channel by introducing the layered montmorillonite on the surface of the separator to guide Li ion flux and achieved stable Li deposition. The atomic interlamellar ion channel with a spacing of 1.4 nm showed strong absorption capacity for electrolytes and reserved capacity for Li ions, thus promoting rapid transfer of Li ions and resulting in even Li ion deposition at the anode. When assembled with the proposed separator, the Coulombic efficiency of Li||Cu batteries was 98.2% after 200 cycles and stable plating/stripping even after 800 h was achieved for the Li||Li symmetric batteries. Importantly, the proposed separator allows 140% specific capacity increase after 190 cycles as employing the Li–S batteries.


ACS Nano ◽  
2015 ◽  
Vol 9 (6) ◽  
pp. 5884-5892 ◽  
Author(s):  
Alexander C. Kozen ◽  
Chuan-Fu Lin ◽  
Alexander J. Pearse ◽  
Marshall A. Schroeder ◽  
Xiaogang Han ◽  
...  

2021 ◽  
Author(s):  
Zulipiya Shadike ◽  
Sha Tan ◽  
Ruoqian Lin ◽  
Xia Cao ◽  
Enyuan Hu ◽  
...  

Lithium metal is a very promising anode material in achieving high energy density for next generation battery systems due to its low redox potential and high theoretical specific capacity of...


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongcai Gao ◽  
Nicholas S. Grundish ◽  
Yongjie Zhao ◽  
Aijun Zhou ◽  
John B. Goodenough

The integration of solid-polymer electrolytes into all-solid-state lithium batteries is highly desirable to overcome the limitations of current battery configurations that have a low energy density and severe safety concerns. Polyacrylonitrile is an appealing matrix for solid-polymer electrolytes; however, the practical utilization of such polymer electrolytes in all-solid-state cells is impeded by inferior ionic conductivity and instability against a lithium-metal anode. In this work, we show that a polymer-in-salt electrolyte based on polyacrylonitrile with a lithium salt as the major component exhibits a wide electrochemically stable window, a high ionic conductivity, and an increased lithium-ion transference number. The growth of dendrites from the lithium-metal anode was suppressed effectively by the polymer-in-salt electrolyte to increase the safety features of the batteries. In addition, we found that a stable interphase was formed between the lithium-metal anode and the polymer-in-salt electrolyte to restrain the uncontrolled parasitic reactions, and we demonstrated an all-solid-state battery configuration with a LiFePO4 cathode and the polymer-in-salt electrolyte, which exhibited a superior cycling stability and rate capability.


2021 ◽  
pp. 2105029
Author(s):  
Yusheng Ye ◽  
Yuanyuan Zhao ◽  
Teng Zhao ◽  
Sainan Xu ◽  
Zhixin Xu ◽  
...  

Author(s):  
Huiping Wu ◽  
Libao Chen ◽  
Yuejiao Chen

Lithium metal anode has been treated as the most promising alternative in next-generation lithium-based batteries due to its ultra-high theoretical capacity, low potential and light weight. However, significant challenges such...


2019 ◽  
Vol 131 (44) ◽  
pp. 15944-15949 ◽  
Author(s):  
Keegan R. Adair ◽  
Changtai Zhao ◽  
Mohammad Norouzi Banis ◽  
Yang Zhao ◽  
Ruying Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document