Golgi recruitment assay for visualizing small-molecule ligand–target engagement in cells

2020 ◽  
Vol 56 (57) ◽  
pp. 7961-7964
Author(s):  
Sachio Suzuki ◽  
Masahiro Ikuta ◽  
Tatsuyuki Yoshii ◽  
Akinobu Nakamura ◽  
Keiko Kuwata ◽  
...  

A Golgi recruitment (G-REC) assay is developed as a new method for visualizing small-molecule ligand–target engagement in living cells.


2020 ◽  
Author(s):  
Sachio Suzuki ◽  
Masahiro Ikuta ◽  
Tatsuyuki Yoshii ◽  
Akinobu Nakamura ◽  
Keiko Kuwata ◽  
...  

<b>The development of methods that allow detection of ligand–target engagement in cells is an important challenge in chemical biology and drug discovery. Here, we present a Golgi recruitment (G-REC) assay in which the ligand binding to the target protein can be visualized as Golgi-localized fluorescence signals. We show that the G-REC assay is applicable to the detection of various ligand–target interactions, ligand affinity comparison among distinct protein isoforms, and the monitoring of unmodified drug–target engagement in cells.</b>



2016 ◽  
Vol 23 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Marc Schürmann ◽  
Petra Janning ◽  
Slava Ziegler ◽  
Herbert Waldmann


2020 ◽  
Author(s):  
Sachio Suzuki ◽  
Masahiro Ikuta ◽  
Tatsuyuki Yoshii ◽  
Akinobu Nakamura ◽  
Keiko Kuwata ◽  
...  

<b>The development of methods that allow detection of ligand–target engagement in cells is an important challenge in chemical biology and drug discovery. Here, we present a Golgi recruitment (G-REC) assay in which the ligand binding to the target protein can be visualized as Golgi-localized fluorescence signals. We show that the G-REC assay is applicable to the detection of various ligand–target interactions, ligand affinity comparison among distinct protein isoforms, and the monitoring of unmodified drug–target engagement in cells.</b>



2020 ◽  
Vol 56 (98) ◽  
pp. 15422-15425
Author(s):  
Shunsuke Sawada ◽  
Akinobu Nakamura ◽  
Tatsuyuki Yoshii ◽  
Keiko Kuwata ◽  
Fubito Nakatsu ◽  
...  

Synthetic molecules consisting of a small-molecule ligand and a tri-N-methylated myristoyl-Gly-Cys lipopeptide serve as chemical tools to rapidly recruit their target proteins from the cytoplasm to the Golgi surface in living cells.



2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3131-3131
Author(s):  
Isaac Klein ◽  
Ann Boija ◽  
Lena Afeyan ◽  
Susana Hawken ◽  
Mengyang Fan ◽  
...  

3131 Background: The molecules of the cell are compartmentalized into membrane- and non-membrane-bound organelles. Many non-membrane-bound organelles are phase-separated biomolecular condensates with distinct physicochemical properties that can absorb and concentrate specific proteins and nucleic acids involved in discrete biochemical processes. We reasoned that selective condensate partitioning might also occur with small molecule drugs whose targets occur within condensates, and that the therapeutic index and efficacy of such compounds might therefore relate to their ability to partition into condensates. Methods: To study the behavior of drugs within condensates, these were modeled in cells and in vitro with purified proteins and visualized by fluorescent confocal microscopy. The functional outcomes of condensate partitioning were queried in cells. Results: We found that cisplatin, tamoxifen, JQ1, THZ1, and mitoxantrone are concentrated in specific protein condensates in vitro, and that this occurs through physicochemical properties independent of the drug target. A screen of a chemically diverse fluorescent probes and mutant-protein condensates demonstrated that pi-system interactions between aromatic moieties in the protein and small molecule govern concentration in condensates. These results show that clinically important drugs partition into specific protein condensates in vitro by virtue of defined chemical properties, thereby altering their local concentration. In vitro droplet assays revealed that cisplatin is selectively concentrated in transcriptional condensates, and that this ability is required for efficient platination of target DNA. In cell studies revealed that cisplatin preferentially targets DNA contained within MED1 condensates, and disrupts the genetic regulatory elements that compose phase-separated transcriptional condensates. Live cell imaging demonstrated that transcriptional condensates are dissolved by cisplatin, whereas other condensates remain intact. Conclusions: Our results show that antineoplastic drugs partition selectively into biomolecular condensates, that this can occur through physicochemical properties independent of their molecular targets, and that drug activity may occur through condensate-related mechanisms. These results have implications for development of efficacious cancer therapeutics; effective target engagement will depend on factors such as drug partitioning in condensates. Assays of the type described here may thus help optimize condensate partitioning, target engagement, and the therapeutic index of drugs for cancer treatment.



2017 ◽  
Author(s):  
Carolyn Bertozzi ◽  
Fred Tomlin ◽  
Ulla Gerling-Driessen ◽  
Yi-Chang Liu ◽  
Ryan Flynn ◽  
...  

We discovered that the proteostasis modulating transcription factor Nrf1 requires cytosolic de-N-glycosylation by the N-glycanase NGly1 as part of its activation mechanism. Through a covalent small molecule library screen, we discovered an inhibitor of NGly1 that blocks Nrf1 activation in cells and potentiates the activity of proteasome inhibitor cancer drugs. The requirement of NGly1 for Nrf1 activity likely underlies several pathologies associated with a rare hereditary deficiency in NGly1.



2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.



2021 ◽  
Vol 444 ◽  
pp. 214019
Author(s):  
Haitao Yu ◽  
Yan Guo ◽  
Wencheng Zhu ◽  
Kaden Havener ◽  
Xujun Zheng


Author(s):  
Jonathan D. Mortison ◽  
Ivan Cornella-Taracido ◽  
Gireedhar Venkatchalam ◽  
Anthony W. Partridge ◽  
Nirodhini Siriwardana ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document