Inhibition of NGLY1 inactivates the transcription factor Nrf1 and potentiates proteasome inhibitor cytotoxicity

Author(s):  
Carolyn Bertozzi ◽  
Fred Tomlin ◽  
Ulla Gerling-Driessen ◽  
Yi-Chang Liu ◽  
Ryan Flynn ◽  
...  

We discovered that the proteostasis modulating transcription factor Nrf1 requires cytosolic de-N-glycosylation by the N-glycanase NGly1 as part of its activation mechanism. Through a covalent small molecule library screen, we discovered an inhibitor of NGly1 that blocks Nrf1 activation in cells and potentiates the activity of proteasome inhibitor cancer drugs. The requirement of NGly1 for Nrf1 activity likely underlies several pathologies associated with a rare hereditary deficiency in NGly1.

2017 ◽  
Author(s):  
Carolyn Bertozzi ◽  
Fred Tomlin ◽  
Ulla Gerling-Driessen ◽  
Yi-Chang Liu ◽  
Ryan Flynn ◽  
...  

We discovered that the proteostasis modulating transcription factor Nrf1 requires cytosolic de-N-glycosylation by the N-glycanase NGly1 as part of its activation mechanism. Through a covalent small molecule library screen, we discovered an inhibitor of NGly1 that blocks Nrf1 activation in cells and potentiates the activity of proteasome inhibitor cancer drugs. The requirement of NGly1 for Nrf1 activity likely underlies several pathologies associated with a rare hereditary deficiency in NGly1.


2010 ◽  
Vol 78 (11) ◽  
pp. 4683-4690 ◽  
Author(s):  
Lynne K. Garrity-Ryan ◽  
Oak K. Kim ◽  
Joan-Miquel Balada-Llasat ◽  
Victoria J. Bartlett ◽  
Atul K. Verma ◽  
...  

ABSTRACT LcrF (VirF), a transcription factor in the multiple adaptational response (MAR) family, regulates expression of the Yersinia type III secretion system (T3SS). Yersinia pseudotuberculosis lcrF-null mutants showed attenuated virulence in tissue culture and animal models of infection. Targeting of LcrF offers a novel, antivirulence strategy for preventing Yersinia infection. A small molecule library was screened for inhibition of LcrF-DNA binding in an in vitro assay. All of the compounds lacked intrinsic antibacterial activity and did not demonstrate toxicity against mammalian cells. A subset of these compounds inhibited T3SS-dependent cytotoxicity of Y. pseudotuberculosis toward macrophages in vitro. In a murine model of Y. pseudotuberculosis pneumonia, two compounds significantly reduced the bacterial burden in the lungs and afforded a dramatic survival advantage. The MAR family of transcription factors is well conserved, with members playing central roles in pathogenesis across bacterial genera; thus, the inhibitors could have broad applicability.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 366-366 ◽  
Author(s):  
Giovanni Roti ◽  
Kenneth N. Ross ◽  
Adolfo A. Ferrando ◽  
Stephen C Blacklow ◽  
Jon Aster ◽  
...  

Abstract Abstract 366 Gain of function mutations in Notch1, which encodes a signaling protein that is converted into a transcription factor upon activation, are the most common genetic abnormality in human T-cell acute lymphoblastic leukemia (T-ALL). Although inhibiting Notch1 activity represents a potential therapeutic opportunity, the discovery of new Notch1 pathway antagonists poses a difficult challenge. Traditional small molecule library screening approaches have not been amenable to modulating transcription factor abnormalities. In order to overcome this challenge, we applied Gene Expression-based High-throughput Screening (GE-HTS) to discover new Notch1 modulators. GE-HTS uses gene expression signatures as surrogates for different biological states. We derived a 32-gene Notch1 expression signature from genome-wide microarray expression profiling of 7 different Notch1 mutant T-ALL cell lines treated with vehicle (Notch1 on) versus a Notch1 inactivating γ-secretase inhibitor (GSI; Notch off) and screened a small molecule library for compounds inducing the Notch1 off state in DND41 mutant Notch1 T-ALL cells. Among numerous ion flux modulators validated to induce the Notch1 off signature, one of the top hits was the FDA-approved calcium channel blocker, bepridil, used to treat patients with cardiac disease. In multiple mutant Notch1 T-ALL cell lines, bepridil induced the Notch1 off signature. We next confirmed that bepridil indeed targets Notch signaling by demonstrating its inhibitory effects on a Notch-sensitive luciferase reporter gene in heterologous U2OS cells expressing a mutated form of Notch1. Similar to the phenotypic effects of GSI, bepridil induced a G0/G1 cell cycle arrest, inhibited cellular viability, and decreased cell size in multiple T-ALL cell lines, including the GSI-resistant cell line PF382. Next, in order to confirm dependency of the induced phenotype on inhibition of Notch, we utilized the 8946 T-ALL cell line. This murine line depends on a doxycycline-repressible human c-myc transgene for growth and can be rescued from transgene withdrawal with activated Notch1, which upregulates the endogenous c-myc gene. In these cells, the phenotypic effect of bepridil on viability is also dependent on Notch1 inhibition because cells rescued from transgene withdrawal with activated Notch1 were more sensitive to the effects of the drug than were those cells still dependent on the c-myc transgene. Finally, we asked whether bepridil altered the level of active Notch1 protein in T-ALL cell lines. As with GSI, bepridil treatment results in decreased levels of intracellular Notch (ICN1). In contrast to GSI, however, bepridil treatment decreased levels of the furin-processed extracellular and transmembrane forms of Notch1 while the full length Notch1 precursor form accumulated upon bepridil treatment. One hypothesis is that by altering ER/Golgi compartment calcium, bepridil prevents the folding of newly synthesized Notch1 polypeptides, leading to its retention in the ER/Golgi and a failure to traffic to cellular compartments where receptor activation occurs. Consistent with this hypothesis co-localization studies in U2OS cell lines expressing the L1601P mutant Notch1 suggest retention of Notch1 in the ER/Golgi. An alternative hypothesis under investigation is that bepridil affects the activity of furin, a calcium-dependent protease that is required for processing of Notch receptors. In summary, we have identified an FDA-approved drug with Notch1 modulating activity in T-ALL by a mechanism unique from GSI. These studies have potential for rapid translation to clinical testing. Disclosures: Ferrando: Merck, Pfizer: Research Funding.


Blood ◽  
2020 ◽  
Vol 135 (1) ◽  
pp. 56-70 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

Transcription factors are important drivers in acute myeloid leukemia (AML), but they are notoriously difficult to target. The authors demonstrate that inhibition of salt-inducible kinase (SIK3) inhibits AML cell proliferation in cells dependent on the transcription factor MEF2C, identifying a small molecule that can disrupt a leukemogenic transcription factor pathway.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ilaria Frasson ◽  
Paola Soldà ◽  
Matteo Nadai ◽  
Sara Lago ◽  
Sara N. Richter

AbstractG-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.


Planta ◽  
2021 ◽  
Vol 253 (2) ◽  
Author(s):  
Dorothea Glowa ◽  
Petra Comelli ◽  
John W. Chandler ◽  
Wolfgang Werr

Abstract Main conclusion Inducible lineage analysis and cell ablation via conditional toxin expression in cells expressing the DORNRÖSCHEN-LIKE transcription factor represent an effective and complementary adjunct to conventional methods of functional gene analysis. Abstract Classical methods of functional gene analysis via mutational and expression studies possess inherent limitations, and therefore, the function of a large proportion of transcription factors remains unknown. We have employed two complementary, indirect methods to obtain functional information for the AP2/ERF transcription factor DORNRÖSCHEN-LIKE (DRNL), which is dynamically expressed in flowers and marks lateral organ founder cells. An inducible, two-component Cre–Lox system was used to express beta-glucuronidase GUS in cells expressing DRNL, to perform a sector analysis that reveals lineages of cells that transiently expressed DRNL throughout plant development. In a complementary approach, an inducible system was used to ablate cells expressing DRNL using diphtheria toxin A chain, to visualise the phenotypic consequences. These complementary analyses demonstrate that DRNL functionally marks founder cells of leaves and floral organs. Clonal sectors also included the vasculature of the leaves and petals, implicating a previously unidentified role for DRNL in provasculature development, which was confirmed in cotyledons by closer analysis of drnl mutants. Our findings demonstrate that inducible gene-specific lineage analysis and cell ablation via conditional toxin expression represent an effective and informative adjunct to conventional methods of functional gene analysis.


Sign in / Sign up

Export Citation Format

Share Document