Perfluoro effect on the electronic excited states of para-benzoquinone revealed by experiment and theory

2021 ◽  
Vol 23 (3) ◽  
pp. 2141-2153
Author(s):  
J. Pereira-da-Silva ◽  
M. Mendes ◽  
F. Kossoski ◽  
A. I. Lozano ◽  
R. Rodrigues ◽  
...  

Several perfluoro effects are observed on the excited states of pBQ, as probed by high-resolution vacuum ultraviolet photoabsorption spectroscopy and TDDFT calculations for TFBQ.

1968 ◽  
Vol 46 (8) ◽  
pp. 987-1003 ◽  
Author(s):  
Ch. Jungen ◽  
E. Miescher

Heterogeneous perturbations 2E+ ~ 2Π of largely different magnitudes are observed with high resolution in the vacuum-ultraviolet absorption and in the infrared emission spectrum of the NO molecule. The rotational interactions between 2Σ+ Rydberg states and levels of the B2Π non-Rydberg state are shown to be "configurationally forbidden", but produced by the configuration interaction between the non-Rydberg levels and 2Π Rydberg states. The latter together with the 2Σ+ Rydberg states form p complexes. In this way the interactions display the l uncoupling in the complexes; they can be evaluated theoretically and can be analyzed fully. The cases of the strong interactions D2Σ+(v = 3) ~ B2Π(v = 16)and D2Σ+(v = 5) ~ B2Π(v = 21) and of the weaker D2Σ+(v = 1) ~ B2Π(v = 11), all three observed as perturbations in ε bands crossing 3 bands, are discussed in detail. It is further shown that perturbations between γ bands and β bands as well as perturbations between analogous bands of higher principal quantum number are absent, and thus the assignment of the A2Σ+ and E2Σ+ states to the s Rydberg series is confirmed.


1966 ◽  
Vol 44 (7) ◽  
pp. 1583-1592 ◽  
Author(s):  
F. Creutzberg

The absorption spectrum of P2 has been photographed at high resolution down to 1 220 Å. Eight band systems have been analyzed, including two that were first observed by Dressier. Four of the excited states are identified as [Formula: see text] states and four as 1Πu states. Rotational and vibrational constants are given for the excited states, including improved constants for the previously known lowest excited [Formula: see text] state.


1996 ◽  
Vol 357-358 ◽  
pp. 629-633 ◽  
Author(s):  
Toshiaki Munakata ◽  
Takeshi Sakashita ◽  
Motowo Tsukakoshi ◽  
Junko Nakamura

2018 ◽  
Author(s):  
Juan Sanz García ◽  
Martial Boggio-Pasqua ◽  
Ilaria Ciofini ◽  
Marco Campetella

<div>The ability to locate minima on electronic excited states (ESs) potential energy surfaces (PESs) both in the case of bright and dark states is crucial for a full understanding of photochemical reactions. This task has become a standard practice for small- to medium-sized organic chromophores thanks to the constant developments in the field of computational photochemistry. However, this remains a very challenging effort when it comes to the optimization of ESs of transition metal complexes (TMCs), not only due to the presence of several electronic excited states close in energy, but also due to the complex nature of the excited states involved. In this article, we present a simple yet powerful method to follow an excited state of interest during a structural optimization in the case of TMC, based on the use of a compact hole-particle representation of the electronic transition, namely the natural transition orbitals (NTOs). State tracking using NTOs is unambiguously accomplished by computing the mono-electronic wavefunction overlap between consecutive steps of the optimization. Here, we demonstrate that this simple but robust procedure works not only in the case of the cytosine but also in the case of the ES optimization of a ruthenium-nitrosyl complex which is very problematic with standard approaches.</div>


Sign in / Sign up

Export Citation Format

Share Document