Copper(ii) complex of N-truncated amyloid-β peptide bearing a His-2 motif as a potential receptor for phosphate anions

2021 ◽  
Author(s):  
Aleksandra Tobolska ◽  
Nina E. Wezynfeld ◽  
Urszula E. Wawrzyniak ◽  
Wojciech Bal ◽  
Wojciech Wróblewski

Significant changes observed in the electrochemical response of the Cu(ii)-Aβ5–9 complex upon phosphates addition provided a new insight into the design of a promising class of peptide-based molecular receptors selective for phosphate species.

2021 ◽  
Author(s):  
Aleksandra Tobolska ◽  
Nina E. Wezynfeld ◽  
Urszula E. Wawrzyniak ◽  
Wojciech Bal ◽  
Wojciech Wróblewski

Correction for ‘Copper(ii) complex of N-truncated amyloid-β peptide bearing a His-2 motif as a potential receptor for phosphate anions’ by Aleksandra Tobolska et al., Dalton Trans., 2021, DOI: 10.1039/d0dt03898a.


2021 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Aleksandra Tobolska ◽  
Nina E. Wezynfeld ◽  
Urszula E. Wawrzyniak ◽  
Wojciech Bal ◽  
Wojciech Wróblewski

Amyloid-β (Aβ) peptides are crucial in the pathology of Alzheimer’s disease. On the other hand, their metal complexes possess distinctive coordination properties that could be of great importance in the selective recognition of (bio)analytes, such as anions. Here, we report a novel group of molecular receptors for phosphate anions recognition: metal–peptide complexes of Aβ peptides, which combine features of synthetic inorganic ligands and naturally occurring binding proteins. The influence of the change in the metal ion center on the coordination and redox properties of binary Cu(II)/Ni(II)-Aβ complexes, as well as the affinity of these complexes towards phosphate species, were analyzed. This approach offers the possibility of fine-tuning the receptor affinity for desired applications.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2015 ◽  
Vol 48 (06) ◽  
Author(s):  
H Esselmann ◽  
C Hafermann ◽  
O Jahn ◽  
I Kraus ◽  
J Vogelgsang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document