scholarly journals Metal–Peptide Complexes—A Novel Class of Molecular Receptors for Electrochemical Phosphate Sensing

2021 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Aleksandra Tobolska ◽  
Nina E. Wezynfeld ◽  
Urszula E. Wawrzyniak ◽  
Wojciech Bal ◽  
Wojciech Wróblewski

Amyloid-β (Aβ) peptides are crucial in the pathology of Alzheimer’s disease. On the other hand, their metal complexes possess distinctive coordination properties that could be of great importance in the selective recognition of (bio)analytes, such as anions. Here, we report a novel group of molecular receptors for phosphate anions recognition: metal–peptide complexes of Aβ peptides, which combine features of synthetic inorganic ligands and naturally occurring binding proteins. The influence of the change in the metal ion center on the coordination and redox properties of binary Cu(II)/Ni(II)-Aβ complexes, as well as the affinity of these complexes towards phosphate species, were analyzed. This approach offers the possibility of fine-tuning the receptor affinity for desired applications.

2021 ◽  
Author(s):  
Aleksandra Tobolska ◽  
Nina E. Wezynfeld ◽  
Urszula E. Wawrzyniak ◽  
Wojciech Bal ◽  
Wojciech Wróblewski

Significant changes observed in the electrochemical response of the Cu(ii)-Aβ5–9 complex upon phosphates addition provided a new insight into the design of a promising class of peptide-based molecular receptors selective for phosphate species.


2015 ◽  
Vol 17 (26) ◽  
pp. 16886-16893 ◽  
Author(s):  
Xu Wang ◽  
Xianqiang Sun ◽  
Guanglin Kuang ◽  
Hans Ågren ◽  
Yaoquan Tu

The investigation of the (ZAβ3)2:Aβ complex highlights the energetic contribution of affibody residues to the binding with alzheimer's disease associated Aβ peptides.


2008 ◽  
Vol 32 (9) ◽  
pp. 1500 ◽  
Author(s):  
Adam J. Bradbury ◽  
Stephen F. Lincoln ◽  
Kevin P. Wainwright

2021 ◽  
Author(s):  
Rolando Oyola ◽  
Deguo Du ◽  
Idalia Ramos ◽  
Kyabeth Torres ◽  
Ambar S Delgado ◽  
...  

Alzheimer’s disease (AD) has been consistently related to the formation of senile amyloid plaques mainly composed of amyloid β (Aβ) peptides. The toxicity of Aβ aggregates has been indicated to...


The Analyst ◽  
2015 ◽  
Vol 140 (17) ◽  
pp. 5891-5900 ◽  
Author(s):  
Thanh Duc Mai ◽  
Iago Pereiro ◽  
Mohamed Hiraoui ◽  
Jean-Louis Viovy ◽  
Stéphanie Descroix ◽  
...  

Novel combination of Magneto-immunocapture and on-beads fluorescent labeling of Aβ peptides for their sensitive determination in cerebro spinal fluid samples.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1848
Author(s):  
Jacob Fritzsch ◽  
Alexander Korn ◽  
Dayana Surendran ◽  
Martin Krueger ◽  
Holger A. Scheidt ◽  
...  

Amyloid β (Aβ) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer’s disease. A complete mechanistic understanding how Aβ peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aβ40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aβ assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aβ40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aβ fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aβ fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aβ40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aβ40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aβ fibrillation pathway.


Author(s):  
Qi Wu ◽  
Leonardo Cortez ◽  
Razieh Kamali-Jamil ◽  
Valerie Sim ◽  
Holger Wille ◽  
...  

Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play a critical role in the development of Alzheimer's disease (AD) pathology. Aβ-containing neuronal exosomes, which represent a novel form of intercellular communication, have been shown to influence function/vulnerability of neurons in AD. Unlike neurons, the significance of exosomes derived from astrocytes remains unclear. In this study, we evaluated the significance of exosomes derived from U18666A-induced cholesterol-accumulated astrocytes in the development of AD pathology. Our results show that cholesterol accumulation decreases exosome secretion, whereas lowering cholesterol level increases exosome secretion from cultured astrocytes. Interestingly, exosomes secreted from U18666A-treated astrocytes contain higher levels of APP, APP-CTFs, soluble APP, APP secretases and Aβ1-40 than exosomes secreted from control astrocytes. Furthermore, we show that exosomes derived from U18666A-treated astrocytes can lead to neurodegeneration, which is attenuated by decreasing Aβ production or by neutralizing exosomal Aβ peptide with an Aβ antibody. These results, taken together, suggest that exosomes derived from cholesterol-accumulated astrocytes can play an important role in trafficking APP/Aβ peptides and influencing neuronal viability in the affected regions of the AD brain.


Sign in / Sign up

Export Citation Format

Share Document