chemoselective hydrogenation
Recently Published Documents


TOTAL DOCUMENTS

470
(FIVE YEARS 103)

H-INDEX

56
(FIVE YEARS 11)

Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 60-77
Author(s):  
Nobutaka Yamanaka ◽  
Shogo Shimazu

Metallic Ni shows high activity for a variety of hydrogenation reactions due to its intrinsically high capability for H2 activation, but it suffers from low chemoselectivity for target products when two or more reactive functional groups are present on one molecule. Modification by other metals changes the geometric and electronic structures of the monometallic Ni catalyst, providing an opportunity to design Ni-based bimetallic catalysts with improved activity, chemoselectivity, and durability. In this review, the hydrogenation properties of these catalysts are described starting from the typical methods of preparing Ni-based bimetallic nanoparticles. In most cases, the reasons for the enhanced catalysis are discussed based on the geometric and electronic effects. This review provides new insights into the development of more efficient and well-structured non-noble metal-based bimetallic catalytic systems for chemoselective hydrogenation reactions.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Antonio Jesús Fernández-Ropero ◽  
Bartosz Zawadzki ◽  
Krzysztof Matus ◽  
Wojciech Patkowski ◽  
Mirosław Krawczyk ◽  
...  

This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).


Nano Letters ◽  
2021 ◽  
Author(s):  
Hu Liu ◽  
Xuexiang Li ◽  
Zhenhui Ma ◽  
Mingzi Sun ◽  
Menggang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document