Prevention of Dextran Sulfate Sodium-induced Mouse Colitis by a Fungal Protein Ling Zhi-8 via Promoting the Barrier Function of Intestinal Epithelial Cells

2021 ◽  
Author(s):  
Yu-Huan Chen ◽  
Jenn-Yeu Shin ◽  
Hsiu-Mei Wei ◽  
Chi-Chen Lin ◽  
Linda Chia-Hui Yu ◽  
...  

A fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum (GL) regulates immune cells and inhibits tumor growth; however, the role of LZ-8 in intestinal epithelial cells (IECs) is...

2011 ◽  
Vol 300 (6) ◽  
pp. G1115-G1123 ◽  
Author(s):  
Seema Saksena ◽  
Sonia Goyal ◽  
Geetu Raheja ◽  
Varsha Singh ◽  
Maria Akhtar ◽  
...  

P-glycoprotein (P-gp) mediates efflux of xenobiotics and bacterial toxins from the intestinal mucosa into the lumen. Dysregulation of P-gp has been implicated in inflammatory bowel disease. Certain probiotics have been shown to be effective in treating inflammatory bowel disease. However, direct effects of probiotics on P-gp are not known. Current studies examined the effects of Lactobacilli on P-gp function and expression in intestinal epithelial cells. Caco-2 monolayers and a mouse model of dextran sulfate sodium-induced colitis were utilized. P-gp activity was measured as verapamil-sensitive [3H]digoxin transepithelial flux. Multidrug resistant 1 (MDR1)/P-gp expression was measured by real-time quantitative PCR and immunoblotting. Culture supernatant (CS; 1:10 or 1:50, 24 h) of Lactobacillus acidophilus or Lactobacillus rhamnosus treatment of differentiated Caco-2 monolayers (21 days postplating) increased (∼3-fold) MDR1/P-gp mRNA and protein levels. L. acidophilus or L. rhamnosus CS stimulated P-gp activity (∼2-fold, P < 0.05) via phosphoinositide 3-kinase and ERK1/2 MAPK pathways. In mice, L. acidophilus or L. rhamnosus treatment (3 × 109 colony-forming units) increased mdr1a/P-gp mRNA and protein expression in the ileum and colon (2- to 3-fold). In the dextran sulfate sodium (DSS)-induced colitis model (3% DSS in drinking water for 7 days), the degree of colitis as judged by histological damage and myeloperoxidase activity was reduced by L. acidophilus. L. acidophilus treatment to DSS-treated mice blocked the reduced expression of mdr1a/P-gp mRNA and protein in the distal colon. These findings suggest that Lactobacilli or their soluble factors stimulate P-gp expression and function under normal and inflammatory conditions. These data provide insights into a novel mechanism involving P-gp upregulation in beneficial effects of probiotics in intestinal inflammatory disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ti-Dong Shan ◽  
Han Yue ◽  
Xue-Guo Sun ◽  
Yue-Ping Jiang ◽  
Li Chen

Abstract Background The complications caused by diabetes mellitus (DM) are the focus of clinical treatment. However, little is known about diabetic enteropathy (DE) and its potential underlying mechanism. Methods Intestinal epithelial cells (IECs) and intestinal epithelial stem cells (IESCs) were harvested from BKS.Cg-Dock7m+/+Leprdb/JNju (DM) mice, and the expression of R-Spondin 3 (Rspo3) was detected by RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. The role of Rspo3 in the abnormal differentiation of IECs during DM was confirmed by knockdown experiments. Through miRNA expression profiling, bioinformatics analysis, and RT-qPCR, we further analyzed the differentiation-related miRNAs in the IECs from mice with DM. Results Abnormal differentiation of IECs was observed in the mice with DM. The expression of Rspo3 was upregulated in the IECs from the mice with DM. This phenomenon was associated with Rspo3 overexpression. Additionally, Rspo3 is a major determinant of Lgr5+ stem cell identity in the diabetic state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays revealed that microRNA (miR)-380-5p directly targeted Rspo3. Moreover, miR-380-5p upregulation was observed to attenuate the abnormal differentiation of IECs by regulating Rspo3 expression. Conclusions Together, our results provide definitive evidence of the essential role of Rspo3 in the differentiation of IECs in DM.


Sign in / Sign up

Export Citation Format

Share Document