Effect of number and different types of proton donors on excited-state intramolecular single and double proton transfer in bipyridine derivatives: theoretical insights

2020 ◽  
Vol 44 (19) ◽  
pp. 8018-8031
Author(s):  
Komsun Chaihan ◽  
Nawee Kungwan

Intra-HBs are strengthened upon photoexcitation, confirmed by red-shift in vibrational mode and topology analysis. Number and type of donors result in difference in photophysical properties. Occurrence of ESIPT depends on barrier and reaction energy.

2019 ◽  
Vol 43 (48) ◽  
pp. 19107-19119 ◽  
Author(s):  
Chanatkran Prommin ◽  
Khanittha Kerdpol ◽  
Tinnakorn Saelee ◽  
Nawee Kungwan

The effects of π-expansion, an extra hydroxyl group, and substituents on the photophysical properties, the excited state single proton transfer and the double proton transfer of 2-hydroxybenzaldehyde and its relatives have been theoretically investigated using TD-DFT.


2021 ◽  
Author(s):  
Xiumin Liu ◽  
Wenzhi Li ◽  
Yuxi Wang ◽  
Yaping Tao ◽  
Yi Wang ◽  
...  

Abstract Density functional theory (DFT) and time-dependent DFT (TDDFT) methods were used to investigate substituent effects and excited-state intramolecular double-proton transfer in 1, 3-bis (2-pyridylimino)-4, 7-dihydroxyisoindole (BPI-OH) and its derivatives. The results of a systematic study of the substituent effects of electron-withdrawing groups (F, Cl, and Br) on the adjacent sites of the benzene ring were used to regulate the photophysical properties of the molecules and the dynamics of the proton-transfer process. Geometric structure comparisons and infrared spectroscopic analysis confirmed that strengthening of the intramolecular hydrogen bond in the first excited state (S1) facilitated proton transfer. Functional analysis of the reduction density gradient confirmed these conclusions. Double-proton transfer in BPI-OH is considered to occur in two steps, i.e., BPI-OH (N) →BPI-OH (T1) →BPI-OH (T2), in the ground state (S0) and the S1 state. The potential-energy curves for two-step proton transfer were scanned for both the S0 and S1 states to clarify the mechanisms and pathways of proton transfer. The stepwise path in which two protons are consecutively transferred has a low energy barrier and is more rational and favorable. This study shows that the presence or absence of coordinating groups, and the type of coordinating group, affect the hydrogen-bond strength. A coordinating group enhances hydrogen-bond formation, i.e., it promotes excited-state intramolecular proton transfer.


Author(s):  
Xiumin Liu ◽  
Heyao Yuan ◽  
Yuxi Wang ◽  
Yaping Tao ◽  
Yi Wang ◽  
...  

In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) methods were used to investigate substituent effects and excited-state intramolecular double-proton transfer (ESIDPT) in 1, 3-bis (2-pyridylimino)-4, 7-dihydroxyisoindole (BPI–OH) and its derivatives. The results of a systematic study of the substituent effects of electron-withdrawing groups (F, Cl and Br) on the adjacent sites of the benzene ring were used to regulate the photophysical properties of the molecules and the dynamics of the proton-transfer process. Geometric structure comparisons and infrared (IR) spectroscopic analysis confirmed that strengthening of the intramolecular hydrogen bond in the first excited state (S1) facilitated proton transfer. Functional analysis of the reduced density gradient confirmed these conclusions. Double-proton transfer in BPI–OH is considered to occur in two steps, i.e., BPI–OH (N) [Formula: see text] BPI–OH (T1) [Formula: see text] BPI–OH (T2), in the ground state (S0) and the S1 state. The potential-energy curves (PECs) for two-step proton transfer were scanned for both the S0 and S1 states to clarify the mechanisms and pathways of proton transfer. The stepwise path in which two protons are consecutively transferred has a low energy barrier and is more rational and favorable. This study shows that the presence or absence of coordinating groups, and the type of coordinating group, affect the hydrogen-bond strength. A coordinating group enhances hydrogen-bond formation, i.e., it promotes excited-state intramolecular proton transfer (ESIPT).


2007 ◽  
Vol 441 (4-6) ◽  
pp. 176-180 ◽  
Author(s):  
Xuan Zhang ◽  
Yusuke Komoto ◽  
Kenji Sakota ◽  
Masayuki Nakagaki ◽  
Haruyuki Nakano ◽  
...  

2003 ◽  
Vol 107 (18) ◽  
pp. 3244-3253 ◽  
Author(s):  
Fa-Tsai Hung ◽  
Wei-Ping Hu ◽  
Tsung-Hui Li ◽  
Chung-Chih Cheng ◽  
Pi-Tai Chou

Sign in / Sign up

Export Citation Format

Share Document