Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering

Nanoscale ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 6937-6952 ◽  
Author(s):  
Huayang Zhang ◽  
Wenjie Tian ◽  
Xiaoguang Duan ◽  
Hongqi Sun ◽  
Yonglong Shen ◽  
...  

Strategies for modifying polymeric carbon nitrides and their intrinsic structure–activity relationships for photo-, electro-, and photoelectro-chemical water oxidation are discussed.

2022 ◽  
Author(s):  
Fei Yu ◽  
Tingting Huo ◽  
Quanhua Deng ◽  
Guoan Wang ◽  
Yuguo Xia ◽  
...  

Expediting the oxygen evolution reaction (OER) is the key to achieving efficient photocatalytic overall water splitting. Herein, single-atom Co−OH modified polymeric carbon nitride (Co-PCN) was synthesized with single-atom loading increased...


2018 ◽  
Author(s):  
Wolfgang Domcke ◽  
Johannes Ehrmaier ◽  
Andrzej L. Sobolewski

The photocatalytic splitting of water into molecular hydrogen and molecular oxygen with sunlight is the dream reaction for solar energy conversion. Since decades, transition-metal-oxide semiconductors and supramolecular organometallic structures have been extensively explored as photocatalysts for solar water splitting. More recently, polymeric carbon nitride materials consisting of triazine or heptazine building blocks have attracted considerable attention as hydrogen-evolution photocatalysts. The mechanism of hydrogen evolution with polymeric carbon nitrides is discussed throughout the current literature in terms of the familiar concepts developed for photoelectrochemical water splitting with semiconductors since the 1970s. We discuss in this perspective an alternative mechanistic paradigm for photoinduced water splitting with carbon nitrides, which focusses on the specific features of the photochemistry of aromatic N-heterocycles in aqueous environments. It is shown that a water molecule which is hydrogen-bonded to an N-heterocycle can be decomposed into hydrogen and hydroxyl radicals by two simple sequential photochemical reactions. This concept is illustrated by first-principles calculations of excited-state reaction paths and their energy profiles for hydrogen-bonded complexes of pyridine, triazine and heptazine with a water molecule. It is shown that the excited-state hydrogen-transfer and hydrogen-detachment reactions are essentially barrierless, in sharp contrast to water oxidation in the electronic ground state, where high barriers prevail. We also discuss in some detail the products of possible reactions of the highly reactive hydroxyl radicals with the chromophores. We hypothesize that the challenge of efficient solar hydrogen generation with carbon-nitride materials is less the decomposition of water as such, but rather the controlled recombination of the photogenerated radicals to the closed-shell products H2 and H2O2.


2016 ◽  
Vol 6 (5) ◽  
pp. 1306-1319 ◽  
Author(s):  
Markus D. Kärkäs ◽  
Rong-Zhen Liao ◽  
Tanja M. Laine ◽  
Torbjörn Åkermark ◽  
Shams Ghanem ◽  
...  

Herein is highlighted how structure–activity relationships can be used to provide mechanistic insight into H2O oxidation catalysis.


2015 ◽  
Vol 51 (24) ◽  
pp. 5005-5008 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Arindam Indra ◽  
Ophir Levy ◽  
Kamalakannan Kailasam ◽  
Vitaly Gutkin ◽  
...  

Here we explore the nickel manganese oxide system for efficient water oxidation and their structure–activity relationships.


2020 ◽  
Vol 268 ◽  
pp. 118398 ◽  
Author(s):  
Yuanxing Fang ◽  
Xiaochun Li ◽  
Yan Wang ◽  
Cristina Giordano ◽  
Xinchen Wang

2018 ◽  
Author(s):  
Wolfgang Domcke ◽  
Johannes Ehrmaier ◽  
Andrzej L. Sobolewski

The photocatalytic splitting of water into molecular hydrogen and molecular oxygen with sunlight is the dream reaction for solar energy conversion. Since decades, transition-metal-oxide semiconductors and supramolecular organometallic structures have been extensively explored as photocatalysts for solar water splitting. More recently, polymeric carbon nitride materials consisting of triazine or heptazine building blocks have attracted considerable attention as hydrogen-evolution photocatalysts. The mechanism of hydrogen evolution with polymeric carbon nitrides is discussed throughout the current literature in terms of the familiar concepts developed for photoelectrochemical water splitting with semiconductors since the 1970s. We discuss in this perspective an alternative mechanistic paradigm for photoinduced water splitting with carbon nitrides, which focusses on the specific features of the photochemistry of aromatic N-heterocycles in aqueous environments. It is shown that a water molecule which is hydrogen-bonded to an N-heterocycle can be decomposed into hydrogen and hydroxyl radicals by two simple sequential photochemical reactions. This concept is illustrated by first-principles calculations of excited-state reaction paths and their energy profiles for hydrogen-bonded complexes of pyridine, triazine and heptazine with a water molecule. It is shown that the excited-state hydrogen-transfer and hydrogen-detachment reactions are essentially barrierless, in sharp contrast to water oxidation in the electronic ground state, where high barriers prevail. We also discuss in some detail the products of possible reactions of the highly reactive hydroxyl radicals with the chromophores. We hypothesize that the challenge of efficient solar hydrogen generation with carbon-nitride materials is less the decomposition of water as such, but rather the controlled recombination of the photogenerated radicals to the closed-shell products H2 and H2O2.


Sign in / Sign up

Export Citation Format

Share Document