scholarly journals Heterogeneous catalysis by ultra-small bimetallic nanoparticles surpassing homogeneous catalysis for carbon–carbon bond forming reactions

Nanoscale ◽  
2020 ◽  
Vol 12 (37) ◽  
pp. 19191-19202 ◽  
Author(s):  
Nazgol Norouzi ◽  
Mrinmoy K. Das ◽  
Alexander J. Richard ◽  
Amr A. Ibrahim ◽  
Hani M. El-Kaderi ◽  
...  

Heterogeneous Pd-based bimetallic catalysts supported on fumed silica with high activity and selectivity matching those of homogeneous catalysts have been developed for carbon–carbon cross-coupling reactions.

2016 ◽  
Vol 12 ◽  
pp. 2898-2905 ◽  
Author(s):  
Michal Medvecký ◽  
Igor Linder ◽  
Luise Schefzig ◽  
Hans-Ulrich Reissig ◽  
Reinhold Zimmer

Iodination of carbohydrate-derived 3,6-dihydro-2H-1,2-oxazines of type 3 using iodine and pyridine in DMF furnished 5-iodo-substituted 1,2-oxazine derivatives 4 with high efficacy. The alkenyl iodide moiety of 1,2-oxazine derivatives syn-4 and anti-4 was subsequently exploited for the introduction of new functionalities at the C-5 position by applying palladium-catalyzed carbon–carbon bond-forming reactions such as Sonogashira, Heck, or Suzuki coupling reactions as well as a cyanation reaction. These cross-coupling reactions led to a series of 5-alkynyl-, 5-alkenyl-, 5-aryl- and 5-cyano-substituted 1,2-oxazine derivatives being of considerable interest for further synthetic elaborations. This was exemplarily demonstrated by the hydrogenation of syn-21 and anti-24 and by a click reaction of a 5-alkynyl-substituted precursor.


Synthesis ◽  
2018 ◽  
Vol 51 (02) ◽  
pp. 334-358 ◽  
Author(s):  
Jean-Philip Lumb ◽  
Kenneth Esguerra

CuIII species have been invoked in many copper-catalyzed transformations including cross-coupling reactions and oxidation reactions. In this review, we will discuss seminal discoveries that have advanced our understanding of the CuI/CuIII redox cycle in the context of C–C and C–heteroatom aerobic cross-coupling reactions, as well as C–H oxidation reactions mediated by CuIII–dioxygen adducts.1 General Introduction2 Early Examples of CuIII Complexes3 Aerobic CuIII-Mediated Carbon–Heteroatom Bond-Forming Reactions4 Aerobic CuIII-Mediated Carbon–Carbon Bond-Forming Reactions5 Bioinorganic Studies of CuIII Complexes from CuI and O2 5.1 O2 Activation5.2 Biomimetic CuIII Complexes from CuI and Dioxygen5.2.1 Type-3 Copper Enzymes and Dinuclear Cu Model Complexes5.2.2 Particulate Methane Monooxygenase and Di- and Trinuclear Cu Model Complexes5.2.3 Dopamine–β-Monooxygenase and Mononuclear Cu Model Complexes6 Conclusion


1986 ◽  
Vol 5 (11) ◽  
pp. 2395-2398 ◽  
Author(s):  
James M. Takacs ◽  
Lawrence G. Anderson ◽  
G. V. Bindu. Madhavan ◽  
Mark W. Creswell ◽  
Franklin L. Seely ◽  
...  

2021 ◽  
Author(s):  
Seyyedeh Ameneh Alavi G. ◽  
Mohammad Ali Nasseri ◽  
Milad Kazemnejadi ◽  
Ali Allahresani ◽  
Mahdi HussainZadeh

The novel heterogeneous bimetallic nanoparticles of Cu–Co were synthesized and successfully applied as a recyclable magnetically catalyst in Heck, Suzuki, and C–N cross-coupling via a quick, easy, efficacious and environmentally protocol.


2018 ◽  
Vol 42 (8) ◽  
pp. 419-423
Author(s):  
Li-Jie Zhang ◽  
Xian Yao ◽  
Ying-xin Sun ◽  
Jia-wei Zhang ◽  
Chun Cai

Pd–Ni bimetallic nanoparticles (BMNPs) supported on ZrO2 were prepared by an impregnation–reduction method. The BMNPs showed excellent catalytic performance in Suzuki carbon–carbon cross-coupling reactions and almost quantitative conversion of the substrates was obtained under mild conditions in the absence of ligand. The excellent catalytic performance of the bimetallic catalyst could be a result of the synergistic effect between the two metal components. The catalyst showed outstanding recyclability during the reaction process; no obvious decrease in catalytic performance was observed after five cycles.


RSC Advances ◽  
2019 ◽  
Vol 9 (50) ◽  
pp. 28936-28945
Author(s):  
Farzana Begum ◽  
Muhammad Ikram ◽  
Brendan Twamley ◽  
Robert J. Baker

Phosphine ligands containing a perfluorous ponytail can be sorbed onto Teflon tape and used as ligands for C–C cross coupling reactions with little leaching.


Sign in / Sign up

Export Citation Format

Share Document