Ring-opening copolymerization of cyclic epoxide and anhydride using a five-coordinate chromium complex with a sterically demanding amino triphenolate ligand

2020 ◽  
Vol 11 (22) ◽  
pp. 3756-3761 ◽  
Author(s):  
Ho Kyun Ryu ◽  
Dae Young Bae ◽  
Hyeongi Lim ◽  
Eunsung Lee ◽  
Kyung-sun Son

This work describes polyester synthesis via alternating ring-opening copolymerization of epoxides and anhydrides using a trigonal bipyramidal chromium complex containing a sterically demanding ligand.

1995 ◽  
Vol 73 (11) ◽  
pp. 2069-2078 ◽  
Author(s):  
Timothy J. Peckham ◽  
Daniel A. Foucher ◽  
Alan J. Lough ◽  
Ian Manners

The silicon-bridged [1]ferrocenophane Fe(η-C5H3SiMe3)2(SiMe2) (5) was synthesized via the reaction of Li2[Fe(η-C5H3SiMe3)2]•tmeda (tmeda = tetramethylethylenediamine) with Me2SiCl2 in hexanes. The disilane-bridged [2]ferrocenophane Fe(η-C5H3SiMe3)2(Si2Me4) (7) was prepared using a similar route from the disilane ClMe2SiSiMe2Cl. Despite the presence of sterically demanding SiMe3 substituents on the cyclopentadienyl rings, compound 5 was found to undergo thermal ring-opening polymerization at 170 °C to produce very soluble, high molecular weight poly(ferrocenylsilane) 6 with Mw = 1.4 × 105, Mn = 8.4 × 104. However, the [2]ferrocenophane 7 was found to be resistant to thermal ring-opening polymerization even at 350 °C and decomposed above 380 °C. A single-crystal X-ray diffraction study of 7 revealed that the steric interactions between the bulky SiMe3 groups are relieved by a significant twisting of the disilane bridge with respect to the plane defined by the centroids of the cyclopentadienyl ligands and the metal atom. The angle between the planes of the cyclopentadienyl rings in 7 was found to be 5.4(6)°, slightly greater than that in the non-silylated analogue Fe(η-C5H4)2(Si2Me4) (4a) (4.19(2)°), and dramatically less than the corresponding tilt angle of the strained, polymerizable, silicon-bridged [1]ferrocenophane Fe(η-C5H4)2(SiMe2) (1) (20.8(5)°). The length of the Si—Si bond in 7 (2.342(3) Å) was found to be close to the sum of the covalent radii (2.34 Å). Crystals of 7 are monoclinic, space group C2/c, with a = 23.689(3) Å, b = 11.174(1) Å, c = 31.027(3) Å, β = 109.16(1)°, V = 7758(2) Å3, and Z = 12. Keywords: ring-opening polymerization, ferrocenophane, organometallic polymers.


2017 ◽  
Vol 73 (8) ◽  
pp. 613-619
Author(s):  
Anton I. Smolentsev

Functionalized acid amides are widely used in biology, medicine, environmental chemistry and many other areas. Among them, pyridine-substituted amides, in particular N-(pyridin-2-yl)acetamide and its derivatives, play an important role due to their excellent chelating properties. The donor properties of these ligands can be effectively modified by introducing electron-donating substituents (e.g. alkyl groups) into the heterocycle. On the other hand, substituents in the α-position of the pyridine ring can create steric hindrance, which significantly influences the coordination number and geometry. To achieve a better understanding of these effects, copper(II) complexes with sterically demanding N-(6-methylpyridin-2-yl)acetamide ligands (L) and monoanions of different size, shape and coordination ability have been chosen as model compounds. The crystal structures of three new compounds, bromidobis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) bromide, [CuBr(C8H10N2O)]Br, (I), aquabis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) dinitrate, [Cu(C8H10N2O)(H2O)](NO3)2, (II), and aquabis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) bis(perchlorate), [Cu(C8H10N2O)(H2O)](ClO4)2, (III), have been determined by single-crystal X-ray diffraction analysis. It has been shown that the presence of the 6-methyl group results in either a distorted square-pyramidal or a distorted trigonal–bipyramidal coordination geometry around the CuII centres instead of the typical octahedral geometry observed when the methyl substituent is absent or occupies any other position on the pyridine ring. Moreover, due to the steric hindrance provided by the L ligands, only the bromide ligand, the smallest of the series, enters into the first coordination sphere of the CuII ion in (I). In (II) and (III), the vacant coordination site of the CuII ion is occupied by a water molecule, while the nitrate and perchlorate anions are not involved in coordination to the metal centre. The structures of (I)–(III) are characterized by the presence of one-dimensional infinite chains formed by hydrogen bonds of the types N—H...Br [in (I)], N—H...O and O—H...O [in (II) and (III)] between the amide groups of the L ligands, the coordinated water molecules and the uncoordinated anions. The hydrogen-bonded chains are further interconnected through π–π stacking interactions between the pyridine rings of the L ligands, with approximate interplanar separations of 3.5–3.6 Å.


Synfacts ◽  
2008 ◽  
Vol 2008 (7) ◽  
pp. 0728-0728
Author(s):  
M. Tiecco ◽  
F. Marini ◽  
L. Testaferri ◽  
S. Sternativo ◽  
F. Verme ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2356
Author(s):  
Marta Navarro ◽  
Andrés Garcés ◽  
Luis F. Sánchez-Barba ◽  
Felipe de la Cruz-Martínez ◽  
Juan Fernández-Baeza ◽  
...  

The direct reaction of the highly sterically demanding acetamidinate-based NNN′-scorpionate protioligand Hphbptamd [Hphbptamd = N,N′-di-p-tolylbis(3,5-di-tertbutylpyrazole-1-yl)acetamidine] with one equiv. of ZnMe2 proceeds in high yield to the mononuclear alkyl zinc complex [ZnMe(κ3-phbptamd)] (1). Alternatively, the treatment of the corresponding lithium precursor [Li(phbptamd)(THF)] with ZnCl2 yielded the halide complex [ZnCl(κ3-phbptamd)] (2). The X-ray crystal structure of 1 confirmed unambiguously a mononuclear entity in these complexes, with the zinc centre arranged with a pseudotetrahedral environment and the scorpionate ligand in a κ3-coordination mode. Interestingly, the inexpensive, low-toxic and easily prepared complexes 1 and 2 resulted in highly efficient catalysts for the ring-opening polymerisation of lactides, a sustainable bio-resourced process industrially demanded. Thus, complex 1 behaved as a single-component robust initiator for the living and immortal ROP of rac-lactide under very mild conditions after a few hours, reaching a TOF value up to 5520 h−1 under bulk conditions. Preliminary kinetic studies revealed apparent zero-order dependence on monomer concentration in the absence of a cocatalyst. The PLA materials produced exhibited narrow dispersity values, good agreement between the experimental Mn values and monomer/benzyl alcohol ratios, as well as enhanced levels of heteroselectivity, reaching Ps values up to 0.74.


2020 ◽  
Vol 2021 (1) ◽  
pp. 50-53
Author(s):  
Victoria A. Pollard ◽  
Alan R. Kennedy ◽  
Ross McLellan ◽  
Duncan Ross ◽  
Tell Tuttle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document