scholarly journals Viscoelastic and thermoreversible networks crosslinked by non-covalent interactions between “clickable” nucleic acid oligomers and DNA

2020 ◽  
Vol 11 (17) ◽  
pp. 2959-2968 ◽  
Author(s):  
Alex J. Anderson ◽  
Heidi R. Culver ◽  
Stephanie J. Bryant ◽  
Christopher N. Bowman

An approach to efficient and scalable production of oligonucleotide-based gel networks is presented.

2020 ◽  
Vol 21 (24) ◽  
pp. 9458
Author(s):  
Sayuri L. Higashi ◽  
Normazida Rozi ◽  
Sharina Abu Hanifah ◽  
Masato Ikeda

Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.


2006 ◽  
Vol 71 (4) ◽  
pp. 443-531 ◽  
Author(s):  
Pavel Hobza ◽  
Rudolf Zahradník ◽  
Klaus Müller-Dethlefs

The review focusses on the fundamental importance of non-covalent interactions in nature by illustrating specific examples from chemistry, physics and the biosciences. Laser spectroscopic methods and both ab initio and molecular modelling procedures used for the study of non-covalent interactions in molecular clusters are briefly outlined. The role of structure and geometry, stabilization energy, potential and free energy surfaces for molecular clusters is extensively discussed in the light of the most advanced ab initio computational results for the CCSD(T) method, extrapolated to the CBS limit. The most important types of non-covalent complexes are classified and several small and medium size non-covalent systems, including H-bonded and improper H-bonded complexes, nucleic acid base pairs, and peptides and proteins are discussed with some detail. Finally, we evaluate the interpretation of experimental results in comparison with state of the art theoretical models: this is illustrated for phenol...Ar, the benzene dimer and nucleic acid base pairs. A review with 270 references.


Author(s):  
Cristobal Perez ◽  
Melanie Schnell ◽  
Peter Schreiner ◽  
Norbert Mitzel ◽  
Yury Vishnevskiy ◽  
...  

2020 ◽  
Author(s):  
Luis Vasquez ◽  
Agnieszka Dybala-Defratyka

<p></p><p>Very often in order to understand physical and chemical processes taking place among several phases fractionation of naturally abundant isotopes is monitored. Its measurement can be accompanied by theoretical determination to provide a more insightful interpretation of observed phenomena. Predictions are challenging due to the complexity of the effects involved in fractionation such as solvent effects and non-covalent interactions governing the behavior of the system which results in the necessity of using large models of those systems. This is sometimes a bottleneck and limits the theoretical description to only a few methods.<br> In this work vapour pressure isotope effects on evaporation from various organic solvents (ethanol, bromobenzene, dibromomethane, and trichloromethane) in the pure phase are estimated by combining force field or self-consistent charge density-functional tight-binding (SCC-DFTB) atomistic simulations with path integral principle. Furthermore, the recently developed Suzuki-Chin path integral is tested. In general, isotope effects are predicted qualitatively for most of the cases, however, the distinction between position-specific isotope effects observed for ethanol was only reproduced by SCC-DFTB, which indicates the importance of using non-harmonic bond approximations.<br> Energy decomposition analysis performed using the symmetry-adapted perturbation theory (SAPT) revealed sometimes quite substantial differences in interaction energy depending on whether the studied system was treated classically or quantum mechanically. Those observed differences might be the source of different magnitudes of isotope effects predicted using these two different levels of theory which is of special importance for the systems governed by non-covalent interactions.</p><br><p></p>


2021 ◽  
Author(s):  
P. Mialane ◽  
C. Mellot-Draznieks ◽  
P. Gairola ◽  
M. Duguet ◽  
Y. Benseghir ◽  
...  

This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.


Sign in / Sign up

Export Citation Format

Share Document