scholarly journals In vitro evaluation of novel low-pressure spark plasma sintered HA–BG composite scaffolds for bone tissue engineering

RSC Advances ◽  
2020 ◽  
Vol 10 (40) ◽  
pp. 23813-23828
Author(s):  
Muhammad Rizwan ◽  
Krishnamurithy Genasan ◽  
Malliga Raman Murali ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Rodianah Alias ◽  
...  

HB 30 S composite scaffold inhibits Staphylococcus spp., supports the biocompatibility and osteogenic differentiation of hBMSCs and resists monocyte migration.

2012 ◽  
Vol 23 (7) ◽  
pp. 1749-1761 ◽  
Author(s):  
Ganesh Nitya ◽  
Greeshma T. Nair ◽  
Ullas Mony ◽  
Krishna Prasad Chennazhi ◽  
Shantikumar V. Nair

2012 ◽  
Vol 32 (4-5) ◽  
pp. 283-289 ◽  
Author(s):  
Jianhao Zhao ◽  
Chunhong Luo ◽  
Wanqing Han ◽  
Mei Tu ◽  
Rong Zeng ◽  
...  

Abstract A ternary composite scaffold of poly(L-lactide)/hydroxyapatite/chitosan fibers was fabricated for bone tissue engineering. Scanning electron microscopy analysis showed that hydroxyapatite particles and chitosan fibers in microscale uniformly distributing in poly(L-lactide) matrix not only increased the mechanical property but also prevented the crack and platelet formation on the pore surface of poly(L-lactide) matrix at cooling. The X-ray diffraction peak intensity of poly(L-lactide) component decrease may be due to the presence of hydroxyapatite particles and chitosan fibers as the crystal nuclei that led to the crystallinity decrease of poly(L-lactide). The in vitro degradation test showed that the degradation of poly(L-lactide) was resisted by enhancing the chitosan fiber content. The bone mesenchymal stem cell culture indicated that the composite scaffolds promoted the attachment and proliferation of cells, which would likely attach to and stretch along the chitosan fibers. Therefore, this ternary composite scaffold will be a promising matrix material for bone tissue engineering.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Sign in / Sign up

Export Citation Format

Share Document