scholarly journals Phase transition and thermal stability of epitaxial PtSe2 nanolayer on Pt(111)

RSC Advances ◽  
2020 ◽  
Vol 10 (51) ◽  
pp. 30934-30943 ◽  
Author(s):  
Yongfeng Tong ◽  
Meryem Bouaziz ◽  
Hamid Oughaddou ◽  
Hanna Enriquez ◽  
Karine Chaouchi ◽  
...  

LEED, STM and XPS techniques were used to systematically study a temperature-dependent phase transition on a PtSe2 film grown on the surface of Pt(111) by a chemical deposition method.

2020 ◽  
Vol 10 (01n02) ◽  
pp. 2060018
Author(s):  
E. M. Bayan ◽  
T. G. Lupeiko ◽  
L. E. Pustovaya ◽  
M. G. Volkova

Sn-doped TiO2 nanomaterials were synthesized by sol–gel method. It was shown the phase compositions and phase transitions change with the introduction of different tin amounts (0.5–20[Formula: see text]mol.%). X-ray powder diffraction was used to study the effect of different tin amounts on the anatase–rutile phase transition. It was found that the introduction of ions increases the thermal stability of anatase modifications. The material’s photocatalytic activity was studied in reaction with a model pollutant (methylene blue) photodegradation under UV and visible light activation. The best photocatalytic properties were shown for material, which contains 5[Formula: see text]mol.% of Sn.


2007 ◽  
Vol 90 (10) ◽  
pp. 102505 ◽  
Author(s):  
S. Engel ◽  
T. Thersleff ◽  
R. Hühne ◽  
L. Schultz ◽  
B. Holzapfel ◽  
...  

2013 ◽  
Vol 34 (4) ◽  
pp. 659-666 ◽  
Author(s):  
Gang SHI ◽  
Wei HAN ◽  
Pei YUAN ◽  
Yu FAN ◽  
Xiaojun BAO

2021 ◽  
pp. 152808372110417
Author(s):  
Zhou Zhao ◽  
Ningning Tong ◽  
Hong Song ◽  
Yan Guo ◽  
Jinmei Wang

In this work, a phase-change energy storage nonwoven fabric was made of polyurethane phase-change material (PUPCM) by a non-woven melt-blown machine. Polyethylene glycol 2000 was used as the phase transition unit and diphenyl-methane-diisocyanate as the hard segment to prepare PUPCM. Thermal stability of the PUPCM was evaluated through thermal stability analysis. The performance of pristine PUPCM was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry to analyze the spinning technology of spinning temperature and the stretching process. Phase-change energy storage nonwoven fabric (413.22 g/m2) was prepared, and the morphology, solid–solid exothermic phase transition, mechanical properties, and the structures were characterized. The enthalpy of solid–solid exothermic phase transition reached 60.17 mJ/mg (peaked at 23.14°C). The enthalpy of solid–solid endothermic phase transition reached 67.09 mJ/mg (peaked at 34.34°C). The strength and elongation of phase-change energy storage nonwoven fabric were found suitable for garments and tent fabrics.


2019 ◽  
Vol 6 (1) ◽  
pp. 1970004
Author(s):  
Chuanjiang Qin ◽  
Toshinori Matsushima ◽  
Dino Klotz ◽  
Takashi Fujihara ◽  
Chihaya Adachi

2016 ◽  
Vol 9 ◽  
pp. 82-89
Author(s):  
Maya Radune ◽  
Michael Zinigrad ◽  
David Fuks ◽  
S. Hayun ◽  
Nachum Frage

Supersaturated titanium-aluminum nitride (Ti1-xAlxN) is a very attractive material for a wide range of applications due to its high oxidation and wear resistance accompanied by high strength, hardness, thermal conductivity and thermal shock resistance. Currently, its applications are limited to coatings obtained by physical or chemical deposition. Bulk materials based on Ti1-xAlxN may be fabricated by powder metallurgy approach using powders synthesized by high-energy ball milling (HEBM), which composition corresponds to supersaturated Ti1-xAlxN solid solution. In the present study, thermal stability of the supersaturated Ti1-xAlxN solid solution was investigated. According to the quasi-binary TiN-AlN phase diagram, constructed using density functional theory (DFT) analysis, the concentration ranges, where decomposition takes place through spinodal decomposition or through nucleation and growth, were determined. Experimental study on thermal stability of solid Ti1-xAlxN solution powder was conducted by means of differential scanning calorimetry (DSC), Brunauer-Emmited-Teller (BET) and XRD. The results indicated that spinodal decomposition of Ti1-xAlxN starts at 800°C, while at temperature higher than 1300°C regular decomposition (nucleation and growth) is occur.


2003 ◽  
Vol 53 (1) ◽  
pp. 287-297
Author(s):  
Susumu Kawasaki ◽  
Shin-Ichi Motoyama ◽  
Toshiaki Tatsuta ◽  
Osamu Tsuji ◽  
Tadashi Shiosaki

Sign in / Sign up

Export Citation Format

Share Document