scholarly journals The mechanism for CO2 reduction over Fe-modified Cu(100) surfaces with thermodynamics and kinetics: a DFT study

RSC Advances ◽  
2020 ◽  
Vol 10 (54) ◽  
pp. 32569-32580
Author(s):  
Mei Qiu ◽  
Yi Li ◽  
Yongfan Zhang

The adsorption, activation and reduction of CO2 over Fex/Cu(100) (x = 1–9) surfaces were examined by density functional theory.

Nano Express ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 010027
Author(s):  
Cantekin Kaykılarlı ◽  
Deniz Uzunsoy ◽  
Ebru Devrim Şam Parmak ◽  
Mehmet Ferdi Fellah ◽  
Özgen Çolak Çakır

Author(s):  
Hanlin Gan ◽  
Liang Peng ◽  
Feng Long Gu

The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.


2019 ◽  
Vol 21 (6) ◽  
pp. 3227-3241 ◽  
Author(s):  
Krishnamoorthy Arumugam ◽  
Neil A. Burton

Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. This DFT study predicts VI/V reduction potentials of a range of uranyl(vi) complexes in non-aqueous solutions within ∼0.10−0.20 eV of experiment.


2017 ◽  
Vol 19 (43) ◽  
pp. 29068-29076 ◽  
Author(s):  
Yu-Te Chan ◽  
Ming-Kang Tsai

The CO2 reduction capabilities of transition-metal-chelated nitrogen-substituted carbon nanotube models (TM-4N2v-CNT, TM = Fe, Ru, Os, Co, Rh, Ir, Ni, Pt or Cu) are characterized by density functional theory.


Author(s):  
Mallikarjunachari Uppuladinne ◽  
Dikshita Dowerah ◽  
Uddhavesh Sonavane ◽  
Suvendra Kumar Ray ◽  
Ramesh Deka ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79485-79496 ◽  
Author(s):  
F. Y. Adeowo ◽  
B. Honarparvar ◽  
A. A. Skelton

This work investigates NOTA–alkali metal (Li+, Na+ and K+ and Rb+) complexation using density functional theory.


2020 ◽  
Vol 22 (6) ◽  
pp. 3304-3313
Author(s):  
Muhammad Isa Khan ◽  
Abdul Majid ◽  
Naveed Ashraf ◽  
Irslan Ullah

In order to search for a new anode material for lithium-ion batteries (LIBs), a borophene/boron nitride (B/BN) interface was investigated in detail using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document