scholarly journals A monodispersed CuPt alloy: synthesis and its superior catalytic performance in the hydrogen evolution reaction over a full pH range

RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12470-12475
Author(s):  
Xinmei Liu ◽  
Chen Liang ◽  
Wenlong Yang ◽  
Chunyang Yang ◽  
Jiaqi Lin ◽  
...  

An effective approach to achieve the low cost and high stability of electro-catalysts for HER.

2020 ◽  
Vol 22 (45) ◽  
pp. 26189-26199
Author(s):  
Huan Lou ◽  
Tong Yu ◽  
Jiani Ma ◽  
Shoutao Zhang ◽  
Aitor Bergara ◽  
...  

Two-dimensional Mo2C materials (1T and 2H phases) have emerged as promising electrocatalysts for the hydrogen evolution reaction (HER) due to their low cost, inherent metallicity, and high stability.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jinbo Hao ◽  
Feng Wei ◽  
Xinhui Zhang ◽  
Long Li ◽  
Chunling Zhang ◽  
...  

AbstractWater electrolysis is a sustainable and clean method to produce hydrogen fuel via hydrogen evolution reaction (HER). Using stable, effective and low-cost electrocatalysts for HER to substitute expensive noble metals is highly desired. In this paper, by using first-principles calculation, we designed a defect and N-, S-, P-doped penta-graphene (PG) as a two-dimensional (2D) electrocatalyst for HER, and its stability, electronic properties and catalytic performance were investigated. The Gibbs free energy (ΔGH), which is the best descriptor for the HER, is calculated and optimized, the calculation results show that the ΔGH can be 0 eV with C2 vacancies and P doping at C1 active sites, which should be the optimal performance for a HER catalyst. Moreover, we reveal that the larger charge transfer from PG to H, the closer ΔGH is to zero according to the calculation of the electron charge density differences and Bader charges analysis. Ulteriorly, we demonstrated that the HER performance prefers the Volmer–Heyrovsky mechanism in this study.


Nanoscale ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 1985-1993 ◽  
Author(s):  
Yuyang Qi ◽  
Long Zhang ◽  
Lan Sun ◽  
Guanjun Chen ◽  
Qiaomei Luo ◽  
...  

Electrocatalysts with high catalytic activity, high stability and low cost are critical to the hydrogen evolution reaction (HER).


Author(s):  
Xi Yin ◽  
Ling Lin ◽  
Hoon T. Chung ◽  
Ulises Martinez ◽  
Andrew M. Baker ◽  
...  

Finding a low-cost and stable electrocatalyst for hydrogen evolution reaction (HER) as a replacement for scarce and expensive precious metal catalysts has attracted significant interest from chemical and materials research communities. Here, we demonstrate an organic catalyst based on 2,2’-dipyridylamine (dpa) molecules adsorbed on carbon surface, which shows remarkable hydrogen evolution activity and performance durability in strongly acidic polymer electrolytes without involving any metal. The HER onset potential at dpa adsorbed on carbon has been found to be less than 50 mV in sulfuric acid and in a Nafion-based membrane electrode assembly (MEA). At the same time, this catalyst has shown no performance loss in a 60-hour durability test. The HER reaction mechanisms and the low onset overpotential in this system are revealed based on electrochemical study. Density functional theory (DFT) calculations suggest that the pyridyl-N functions as the active site for H adsorption with a free energy of -0.13 eV, in agreement with the unusually low onset overpotential for an organic molecular catalyst.<br>


2019 ◽  
Author(s):  
Xi Yin ◽  
Ling Lin ◽  
Hoon T. Chung ◽  
Ulises Martinez ◽  
Andrew M. Baker ◽  
...  

Finding a low-cost and stable electrocatalyst for hydrogen evolution reaction (HER) as a replacement for scarce and expensive precious metal catalysts has attracted significant interest from chemical and materials research communities. Here, we demonstrate an organic catalyst based on 2,2’-dipyridylamine (dpa) molecules adsorbed on carbon surface, which shows remarkable hydrogen evolution activity and performance durability in strongly acidic polymer electrolytes without involving any metal. The HER onset potential at dpa adsorbed on carbon has been found to be less than 50 mV in sulfuric acid and in a Nafion-based membrane electrode assembly (MEA). At the same time, this catalyst has shown no performance loss in a 60-hour durability test. The HER reaction mechanisms and the low onset overpotential in this system are revealed based on electrochemical study. Density functional theory (DFT) calculations suggest that the pyridyl-N functions as the active site for H adsorption with a free energy of -0.13 eV, in agreement with the unusually low onset overpotential for an organic molecular catalyst.<br>


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 662 ◽  
Author(s):  
Guangsheng Liu ◽  
Kunyapat Thummavichai ◽  
Xuefeng Lv ◽  
Wenting Chen ◽  
Tingjun Lin ◽  
...  

Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm−2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst.


Author(s):  
Jin Cao ◽  
Dongdong Zhang ◽  
Xinyu Zhang ◽  
Zhiyuan Zeng ◽  
Jiaqian Qin ◽  
...  

High‐safety and low‐cost aqueous zinc‐ion batteries (ZIBs) are an exceptionally compelling technology for grid‐scale energy storage, whereas the corrosion, hydrogen evolution reaction and dendrites growth of Zn anodes plague their...


RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 5480-5487 ◽  
Author(s):  
Jung Eun Lee ◽  
Jaemin Jung ◽  
Taeg Yeoung Ko ◽  
Sujin Kim ◽  
Seong-Il Kim ◽  
...  

GO content tuning gradually enhanced the HER catalytic performance of the MoS2/rGO hybrids, decreasing the Tafel slope from 82 to 48 mV per decade owing to an increase of catalytically active areas and an electronic transition of MoS2.


Sign in / Sign up

Export Citation Format

Share Document