Atomically thin mesoporous NiCo2O4 grown on holey graphene for enhanced pseudocapacitive energy storage

2020 ◽  
Vol 8 (27) ◽  
pp. 13443-13451 ◽  
Author(s):  
Ding Yuan ◽  
Yuhai Dou ◽  
Li Xu ◽  
Linping Yu ◽  
Ningyan Cheng ◽  
...  

Pseudocapacitive charge storage at the surface/interface of atomically thin mesoporous heterostructures is promising for achieving both high energy density and high power density in lithium-ion batteries (LIBs).

JOM ◽  
2017 ◽  
Vol 69 (9) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
Seong Jin AN ◽  
Lamuel Abraham David ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2020 ◽  
Vol 49 (23) ◽  
pp. 8790-8839
Author(s):  
Yun Zheng ◽  
Yuze Yao ◽  
Jiahua Ou ◽  
Matthew Li ◽  
Dan Luo ◽  
...  

All-solid-state lithium ion batteries (ASSLBs) are considered next-generation devices for energy storage due to their advantages in safety and potentially high energy density.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9833-9839
Author(s):  
Changzhen Zhan ◽  
Jianan Song ◽  
Xiaolong Ren ◽  
Yang Shen ◽  
Hui Wu ◽  
...  

Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density, high power density and flexibility at the same time.


2021 ◽  
Author(s):  
Fengping Xiao ◽  
Peng Hu ◽  
Yanni Wu ◽  
Qing Tang ◽  
Nilesh Shinde ◽  
...  

Sodium-selenium (Na-Se) batteries are promising alternatives to Lithium-ion batteries for energy storage systems owing to their high energy density and natural abundance of Na resources. However, their drawbacks of low...


Sign in / Sign up

Export Citation Format

Share Document