scholarly journals Porous evaporators with special wettability for low-grade heat-driven water desalination

Author(s):  
Zhigao Zhu ◽  
Ying Xu ◽  
Yifei Luo ◽  
Wei Wang ◽  
Xiaodong Chen

Design of novel special wettable evaporators with robust stability for high-performances porous interface distillation.

2021 ◽  
Vol 43 ◽  
pp. 103219
Author(s):  
Ehab S. Ali ◽  
Ahmed A. Askalany ◽  
K. Harby ◽  
Mohamed Refaat Diab ◽  
Bahgat R.M. Hussein ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 774-780 ◽  
Author(s):  
S. Al-Kharabsheh ◽  
D. Yogi Goswami

Theoretical analysis of a solar desalination system utilizing an innovative new concept, which uses low-grade solar heat, is presented. The system utilizes natural means of gravity and atmospheric pressure to create a vacuum, under which liquid can be evaporated at much lower temperatures and with less energy than conventional techniques. The uniqueness of the system is in the way natural forces are used to create vacuum conditions and its incorporation in a single system design where evaporation and condensation take place at appropriate locations without any energy input other than low grade heat. The system consists of solar heating system, an evaporator, a condenser, and injection, withdrawal, and discharge pipes. The effect of various operating conditions, namely, withdrawal rate, depth of water body, temperature of the heat source, and condenser temperature were studied. Numerical simulations show that the proposed system may have distillation efficiencies as high as 90% or more. Vacuum equivalent to 3.7 kPa (abs) or less can be created depending on the ambient temperature at which condensation will take place.


1997 ◽  
Vol 173 (1-3) ◽  
pp. 167-174 ◽  
Author(s):  
E.O. Adamov ◽  
Yu.M. Cherkashov ◽  
A.A. Romenkov ◽  
V.I. Mikhan ◽  
V.I. Semenikhin

Author(s):  
S. Al-Kharabsheh ◽  
D. Yogi Goswami

Theoretical analysis of a solar desalination system utilizing an innovative new concept, which uses low-grade solar heat, is presented. The system utilizes natural means of gravity and atmospheric pressure to create a vacuum, under which liquid can be evaporated at much lower temperatures and with less energy than conventional techniques. The uniqueness of the system is in the way natural forces are used to create vacuum conditions and its incorporation in a single system design where evaporation and condensation take place at appropriate locations without any energy input other than low grade heat. The system consists of solar heating system, an evaporator, a condenser, and injection, withdrawal, and discharge pipes. The effect of various operating conditions, namely, withdrawal rate, depth of water body, temperature of the heat source, and condenser temperature were studied. Numerical simulations show that the proposed system may have distillation efficiencies as high as 90% or more. Vacuum equivalent to 3.7 kPa (abs) or less can be created depending on the ambient temperature at which condensation will take place.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2021 ◽  
Vol 2 (2) ◽  
pp. 021304
Author(s):  
Hang Zhang ◽  
Qing Wang
Keyword(s):  

2021 ◽  
Vol 33 (13) ◽  
pp. 2170096
Author(s):  
Caitian Gao ◽  
Yezhou Liu ◽  
Bingbing Chen ◽  
Jeonghun Yun ◽  
Erxi Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document