electrochemical system
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 178)

H-INDEX

34
(FIVE YEARS 9)

2022 ◽  
Vol 204 ◽  
pp. 112051
Author(s):  
Liang Qiao ◽  
Ye Yuan ◽  
Chang Mei ◽  
Wanxin Yin ◽  
Chao Zou ◽  
...  

2022 ◽  
Author(s):  
Peng Zhou ◽  
Wenchang Li ◽  
Jianyong Lan ◽  
Tingshun Zhu

Abstract Oxidative carbene organocatalysis, inspired from Vitamin B1 catalyzed oxidative activation from pyruvate to acetyl coenzyme A, have been developed as a versatile synthetic method. To date, the α-, β-, γ-, δ- and carbonyl carbons of (unsaturated)aldehydes have been successfully activated via oxidative N-heterocyclic carbene (NHC) organocatalysis. In comparison with chemical redox or photoredox methods, electroredox methods, although widely used in mechanistic study, were much less studied in NHC catalyzed organic synthesis. Herein, an electroredox NHC organocatalysis system with iodine cocatalyst was developed. With the help of non-uniform distribution of electrolysis system, NHC and iodine, which was normally not compatible in chemical reaction, cooperated well in the electrochemical system. This cocatalyst system provided general solutions for electrochemical single-electron-transfer (SET) oxidation of Breslow intermediate towards versatile transformations. Radical clock experiment and cyclic voltammetry results suggested an anodic radical coupling pathway.


2022 ◽  
Vol 334 ◽  
pp. 08008
Author(s):  
Pierangela Cristiani ◽  
Laura Malavola ◽  
Silvia Franz ◽  
Massimiliano Bestetti ◽  
Giuliana D’Ippolito ◽  
...  

Thermotoga neapolitana is a hyperthermophilic bacterium that can metabolize glucose and several organic wastes in hydrogen and lactate at a temperature of 80°C. Their high performance in producing hydrogen at so high a temperature as 80°C suggests a potential energy application of them where hydrogen is an important element of the process. In this view, experimentation of a T.neapolitana strain is carried out in double-chamber electrochemical systems. The aim is to explore the interaction of these bacteria with the anode and the cathode, stressing their capability to survive in presence of a polarized electrode which can drastically change the pH of the media. A culture enriched of 5 g/L of glucose, under CO2 pressure (80 °C) was used to fill both the anodic and cathodic compartments of the electrochemical system, applying a voltage of 1.5 V between the anode and the cathode. The test lasted ten days. Results clearly indicate that bacteria colonize both electrodes, but the glucose metabolism is completely inhibited in the anodic compartments. On the contrary, metabolism is stimulated in the cathodic compartment. Bacteria are alive on the electrodes in the pH interval of 3 - 9.


Author(s):  
Itzel Romero-Soto ◽  
Celestino Garcia-Gomez ◽  
Luis Leyva-Soto ◽  
Juan Napoles-Armenta ◽  
María Concha-Guzman ◽  
...  

Abstract The application and design of treatment systems in wastewater are necessary due to antibiotics' potential toxicity and resistant genes on residual effluent. This work evaluated a coupled bio-electrochemical system to reduce chloramphenicol (CAP) and chemical oxygen demand (COD) on swine wastewater (SWW). SWW characterization found CAP of <10 μg/L and 17,434 mg/L of COD. The coupled system consisted of preliminary use of an Up-flow Anaerobic Sludge Blanket Reactor (UASB) followed by electrooxidation (EO). UASB reactor (primary stage) was operated for three months at an organic load of 8.76 kg of COD/m3d and 50 mg CAP/L as initial concentration. In EO, we carried out a 22 (time operation and intensity) factorial design with a central composite design; we tried two Ti cathodes and one anode of Ti/PbO2. Optimal conditions obtained in the EO process were 240 min of operation time and 1.51 A of current intensity. It was possible to eliminate 44% of COD and 64.2% of CAP in the preliminary stage. On bio-electrochemical, a total COD and CAP removal were 82.35% and >99.99%, respectively. This coupled system can be applied to eliminate antibiotics and other organic pollutants in agricultural, industrial, municipal, and other wastewaters.


Author(s):  
H Wu ◽  
Z Liu ◽  
L Xu ◽  
X Wang ◽  
Qiang Chen ◽  
...  

Abstract The interactions between discharge plasmas and an aqueous solutions can enable the production of reactive species and charge transfer at the plasma-liquid interface, forming the plasma electrochemical system (PES). The PES are promising for diverse applications, such as nanomaterials synthesis, due to the activation of the solution chemistry by the plasma. In this paper, we investigate the influence of the solution’s pH value on the formation of silver nanoparticles (AgNPs) in a direct current (DC) PES. Dual argon DC plasmas are generated in an H-type electrochemical cell containing an aqueous solution of silver nitrate with pH values in the range of 1.99-10.71. By this design, the solution acts as a cathode at one end of the H-type cell, and as an anode at the other end. The results show that the AgNPs are formed at the anode except for the solution with the pH value of 1.99. However, at the cathode, the AgNPs only appear in the solution with the pH value of 10.71. We find that the solvated electrons and hydrogen peroxide produced by the plasma-liquid interactions are responsible for the Ag+ reduction at the solution anode and the solution cathode, respectively.


Sign in / Sign up

Export Citation Format

Share Document