An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells

2020 ◽  
Vol 8 (18) ◽  
pp. 6293-6298
Author(s):  
Cancan Jiao ◽  
Ziqi Guo ◽  
Binqiao Sun ◽  
Yuan-qiu-qiang Yi ◽  
Lingxian Meng ◽  
...  

An acceptor molecule with an asymmetric backbone, CC10, has been designed, which achieved a power conversion efficiency of 11.78%.

2012 ◽  
Vol 48 (13) ◽  
pp. 1857-1859 ◽  
Author(s):  
Shi-Wen Chiu ◽  
Li-Yen Lin ◽  
Hao-Wu Lin ◽  
Yi-Hong Chen ◽  
Zheng-Yu Huang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2020 ◽  
Vol 8 (44) ◽  
pp. 23239-23247
Author(s):  
Andy Man Hong Cheung ◽  
Han Yu ◽  
Siwei Luo ◽  
Zhen Wang ◽  
Zhenyu Qi ◽  
...  

This is the first time alkylthio chains are employed on Y6-like NFAs to achieve organic solar cells of power conversion efficiency higher than 16%.


2017 ◽  
Vol 5 (44) ◽  
pp. 23067-23077 ◽  
Author(s):  
Keisuke Ogumi ◽  
Takafumi Nakagawa ◽  
Hiroshi Okada ◽  
Ryohei Sakai ◽  
Huan Wang ◽  
...  

Acceptor–donor–acceptor conjugated magnesium porphyrins showed a power conversion efficiency of 5.73%, high open-circuit voltage of 0.79 V, or an extended incident photon-to-current conversion efficiency spectrum to 1100 nm, depending on the substituents.


Author(s):  
Chuang Yao ◽  
Yezi Yang ◽  
Lei Li ◽  
Maolin Bo ◽  
Cheng Peng ◽  
...  

Cyano-group (−C≡N) is an electron-withdrawing group, which has been widely used to construct high-performance fused-ring electron acceptors (FREAs). Benefiting from these FREAs, the power conversion efficiency of organic solar cells...


2020 ◽  
Vol 8 (34) ◽  
pp. 17706-17712 ◽  
Author(s):  
Tao Yang ◽  
Ruijie Ma ◽  
Hao Cheng ◽  
Yiqun Xiao ◽  
Zhenghui Luo ◽  
...  

Polymer acceptors with acceptor–donor–acceptor (A–D–A) building blocks have demonstrated great potential in achieving excellent power conversion efficiency (PCE) and stability in the field of organic solar cells (OSCs).


RSC Advances ◽  
2014 ◽  
Vol 4 (32) ◽  
pp. 16681-16685 ◽  
Author(s):  
O. Synooka ◽  
K.-R. Eberhardt ◽  
H. Hoppe

In this work, we demonstrate the successful replacement of a chlorinated solvent system based on a 1 : 1 mixture of chlorobenzene and ortho-dichlorobenzene with the chlorine-free solvent xylene, resulting in chlorine-free processing with a small amount of diiodooctane additive. In fact, the overall power conversion efficiency is improved from 6.71% for the chlorinated solvents to 7.15% for the chlorine-free solvent m-xylene.


2021 ◽  
Author(s):  
Jakob Hofinger ◽  
Christoph Putz ◽  
Felix Mayr ◽  
Katarina Gugujonovic ◽  
Dominik Wielend ◽  
...  

Despite the rapid increase in power conversion efficiency (PCE) of non-fullerene acceptor (NFA) based solar cells in recent years, organic photovoltaic (OPV) devices exhibit considerably larger voltage losses compared to...


2020 ◽  
Vol 8 (10) ◽  
pp. 5194-5199 ◽  
Author(s):  
Yao Cai ◽  
Lingxian Meng ◽  
Huanhuan Gao ◽  
Ziqi Guo ◽  
Nan Zheng ◽  
...  

An acceptor molecule with a cyclopentathiophene fused backbone, BCPT-4F, has been designed and synthesized. A power conversion efficiency of 14.23% was achieved for BCPT-4F based organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document