Tracing absorption and emission characteristics of halogen-bonded ion pairs involving halogenated imidazolium species

2021 ◽  
Vol 23 (12) ◽  
pp. 7480-7494
Author(s):  
Sarah Karbalaei Khani ◽  
Bastian Geissler ◽  
Elric Engelage ◽  
Patrick Nuernberger ◽  
Christof Hättig

Spectroscopic signatures of ion-pairing are identified by variation of counterion and substitution and comparison with theory.

2020 ◽  
Author(s):  
James Sterling ◽  
Wenjuan Jiang ◽  
Wesley M. Botello-Smith ◽  
Yun L. Luo

Molecular dynamics simulations of hyaluronic acid and heparin brushes are presented that show important effects of ion-pairing, water dielectric decrease, and co-ion exclusion. Results show equilibria with electroneutrality attained through screening and pairing of brush anionic charges by cations. Most surprising is the reversal of the Donnan potential that would be expected based on electrostatic Boltzmann partitioning alone. Water dielectric decrement within the brush domain is also associated with Born hydration-driven cation exclusion from the brush. We observe that the primary partition energy attracting cations to attain brush electroneutrality is the ion-pairing or salt-bridge energy associated with cation-sulfate and cation-carboxylate solvent-separated and contact ion pairs. Potassium and sodium pairing to glycosaminoglycan carboxylates and sulfates consistently show similar abundance of contact-pairing and solvent-separated pairing. In these crowded macromolecular brushes, ion-pairing, Born-hydration, and electrostatic potential energies all contribute to attain electroneutrality and should therefore contribute in mean-field models to accurately represent brush electrostatics.


2021 ◽  
Vol 57 (35) ◽  
pp. 4287-4290
Author(s):  
Ryohei Yamakado ◽  
Issei Kitamura ◽  
Mitsuo Hara ◽  
Shusaku Nagano ◽  
Takahiro Seki ◽  
...  

Large mass transport driven by the difference in the photoisomerization-induced surface tension was demonstrated in ion pairs, enabling fluorescence patterning using a trace amount of photoisomerized anions in complexation with a π-electronic system.


2016 ◽  
Vol 13 (1) ◽  
pp. 76 ◽  
Author(s):  
Herman P. van Leeuwen ◽  
Raewyn M. Town

Environmental context Humic acids are negatively charged soft nanoparticles that play a governing role in the speciation of many ionic and molecular compounds in the environment. The charge density in the humic acid nanoparticle can be very high and the binding of divalent cations such as Ca2+ appears to go far beyond traditional ion pairing or Poisson–Boltzmann electrostatics. A two-state approach, combining counterion condensation in the intraparticulate double layer and classical Donnan partitioning in the bulk of the particle, provides a satisfactory description of the physicochemical speciation. Abstract Experimental data for divalent counterion binding by soil humic acid nanoparticles are set against ion distributions as ensuing from continuous Poisson–Boltzmann electrostatics and a two-state condensation approach. The results demonstrate that Poisson–Boltzmann massively underestimates the extent of binding of Ca2+ by humic acid, and that electric condensation of these counterions within the soft nanoparticulate body must be involved. The measured stability of the Ca2+–humic acid associate is also much greater than that predicted for ion pairing between single Ca2+ ions and monovalent negative humic acid sites, which also points to extensive electrostatic cooperativity within the humic acid particle. At sufficiently high pH, the charge density inside the humic acid entity may indeed become so high that the bulk particle attains a very high and practically flat potential profile throughout. At this limit, all the intraparticulate Ca2+ is at approximately the same electrostatic potential and the status of individual ion pairs has become immaterial. A two-state model, combining counterion condensation in the charged intraparticulate part of the double layer at the particle–medium interface and Donnan partitioning in the uncharged bulk of the humic acid particle, seems to lead the way to adequate modelling of the divalent counterion binding for various particle sizes and different ionic strengths.


1990 ◽  
Vol 45 (8) ◽  
pp. 1197-1204 ◽  
Author(s):  
H. Bock ◽  
P. Hänel ◽  
H.-F. Herrmann

The radical anion of dimesityltetraketone (ERed, I = -0.40 V) is easily generated in THF by potassium mirror/[2.2.2]-cryptand reduction. Its contact ion pairs with Na⊕, Cs⊕ and Ba⊕⊕ counter cations, prepared in THF solution by single electron transfer from the respective metals, are characterized by their ESR/ENDOR spectra, which exhibit temperature-dependent metal couplings of aNa⊕ = 0.061 mT (190 K), aCs⊕ = 0.021 mT (190 K), and aBa⊕⊕ = 0.145 mT (295 K).


2020 ◽  
Vol 5 (4) ◽  
pp. 757-771
Author(s):  
Yohei Haketa ◽  
Kazuki Urakawa ◽  
Hiromitsu Maeda

The prologue and progress of π-electronic ion-pairing assemblies, including synthesis of π-electronic ions, preparation of ion pairs, fabrication of assemblies as crystals, gels and liquid crystals and their characteristic properties, are summarized.


2019 ◽  
Vol 488 (4) ◽  
pp. 4530-4545 ◽  
Author(s):  
Jack T O'Malley-James ◽  
Lisa Kaltenegger

ABSTRACT Our first targets in the search for signs of life are orbiting nearby M stars, such as the planets in the Proxima Centauri, Ross-128, LHS-1140, and TRAPPIST-1 systems. Future ground-based discoveries, and those from the TESS mission, will provide additional close-by targets. However, young M stars tend to be very active, flaring frequently and causing UV fluxes on the surfaces of HZ planets to become biologically harmful. Common UV-protection methods used by life (e.g. living underground, or underwater) would make a biosphere harder to detect. However, photoprotective biofluorescence, ‘up-shifting’ UV to longer, safer wavelengths, could increase a biosphere's detectability. Here we model intermittent emission at specific wavelengths in the visible spectrum caused by biofluorescence as a new temporal biosignature for planets around active M stars. We use the absorption and emission characteristics of common coral fluorescent pigments and proteins to create model spectra and colours for an Earth-like planet in such a system, accounting for different surface features, atmospheric absorption, and cloud cover. We find that for a cloud-free planet biofluorescence could induce a temporary change in brightness that is significantly higher than the reflected flux alone, causing up to two orders-of-magnitude change in planet–star contrast, compared to a non-fluorescent state, if the surface is fully covered by a highly efficient fluorescent biosphere. Hence, UV-flare induced biofluorescence presents previously unexplored possibilities for a new temporal biosignature that could be detectable by instruments like those planned for the extremely large telescope and could reveal hidden biospheres.


Sign in / Sign up

Export Citation Format

Share Document