scholarly journals Dichotomy between heterotypic and homotypic interactions by a common chemical law

Author(s):  
Jérôme J. Lacroix

This study introduces a general correction to the classical chemical rate law to avoid overestimating the frequency of homotypic interactions.

1987 ◽  
Author(s):  
Moideen P Jamaluddin

Platelet aggregation kinetics, according to the particle collision theory, generally assumed to apply, ought to conform to a second order type of rate law. But published data on the time-course of ADP-induced single platelet recruitment into aggregates were found not to do so and to lead to abnormal second order rate constants much larger than even their theoretical upper bounds. The data were, instead, found to fit a first order type of rate law rather well with rate constants in the range of 0.04 - 0.27 s-1. These results were confirmed in our laboratory employing gelfiltered calf platelets. Thus a mechanism much more complex than hithertofore recognized, is operative. The following kinetic scheme was formulated on the basis of information gleaned from the literature.where P is the nonaggregable, discoid platelet, A the agonist, P* an aggregable platelet form with membranous protrusions, and P** another aggregable platelet form with pseudopods. Taking into account the relative magnitudes of the k*s and assuming aggregation to be driven by hydrophobic interaction between complementary surfaces of P* and P** species, a rate equation was derived for aggregation. The kinetic scheme and the rate equation could account for the apparent first order rate law and other empirical observations in the literature.


1983 ◽  
Vol 15 (5) ◽  
pp. 417-432 ◽  
Author(s):  
Giuseppe Calvaruso ◽  
F. Paolo Cavasino ◽  
Carmelo Sbriziolo ◽  
Roberto Triolo
Keyword(s):  

1979 ◽  
Vol 32 (9) ◽  
pp. 1905 ◽  
Author(s):  
AF Godfrey ◽  
JK Beattie

The oxidation of butan-1-ol by ferricyanide ion in alkaline aqueous solution is catalysed by solutions of ruthenium trichloride hydrate. The kinetics of the reaction has been reinvestigated and the data are consistent with the rate law -d[FeIII]/dt = [Ru](2k1k2 [BuOH] [FeIII])/(2k1 [BuOH]+k2 [FeIII]) This rate law is interpreted by a mechanism involving oxidation of butanol by the catalyst (k1) followed by reoxidation of the catalyst by ferricyanide (k2). The non-linear dependence of the rate on the butanol concentration is ascribed to the rate-determining, butanol-independent reoxidation of the catalyst, rather than to the saturation of complex formation between butanol and the catalyst as previously claimed. Absolute values of the rate constants could not be determined, because some of the ruthenium precipitates from basic solution. With K3RuCl6 as the source of a homogeneous catalyst solution, estimates were obtained at 30�0�C of k1 = 191. mol-1 s-1 and k2 = 1�4 × 103 l. mol-1 s-1.


2017 ◽  
Author(s):  
Paul Jones ◽  
Charm Boontheung ◽  
Greg Hundt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document