Incorporation Efficiency and Inhibition Mechanism of 2’-Substituted Nucleotide Analogs against SARS-CoV-2 RNA-dependent RNA polymerase

Author(s):  
Congmin Yuan ◽  
Eshani C. Goonetilleke ◽  
Ilona Christy Unarta ◽  
Xuhui Huang

The ongoing pandemic caused by SARS-CoV-2 emphasizes the need for effective therapeutics. Inhibition of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by nucleotide analogs provides a promising antiviral strategy. One common group...

2020 ◽  
Vol 65 (1) ◽  
pp. e01508-20
Author(s):  
Gaofei Lu ◽  
Xi Zhang ◽  
Weinan Zheng ◽  
Jialei Sun ◽  
Lan Hua ◽  
...  

ABSTRACTNucleotide analogs targeting viral RNA polymerase have been proved to be an effective strategy for antiviral treatment and are promising antiviral drugs to combat the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. In this study, we developed a robust in vitro nonradioactive primer extension assay to quantitatively evaluate the efficiency of incorporation of nucleotide analogs by SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Our results show that many nucleotide analogs can be incorporated into RNA by SARS-CoV-2 RdRp and that the incorporation of some of them leads to chain termination. The discrimination values of nucleotide analogs over those of natural nucleotides were measured to evaluate the incorporation efficiency of nucleotide analog by SARS-CoV-2 RdRp. In agreement with the data published in the literature, we found that the incorporation efficiency of remdesivir-TP is higher than that of ATP and incorporation of remdesivir-TP caused delayed chain termination, which can be overcome by higher concentrations of the next nucleotide to be incorporated. Our data also showed that the delayed chain termination pattern caused by remdesivir-TP incorporation is different for different template sequences. Multiple incorporations of remdesivir-TP caused chain termination under our assay conditions. Incorporation of sofosbuvir-TP is very low, suggesting that sofosbuvir may not be very effective in treating SARS-CoV-2 infection. As a comparison, 2′-C-methyl-GTP can be incorporated into RNA efficiently, and the derivative of 2′-C-methyl-GTP may have therapeutic application in treating SARS-CoV-2 infection. This report provides a simple screening method that should be useful for evaluating nucleotide-based drugs targeting SARS-CoV-2 RdRp and for studying the mechanism of action of selected nucleotide analogs.


Author(s):  
Gaofei Lu ◽  
Xi Zhang ◽  
Weinan Zheng ◽  
Jialei Sun ◽  
Lan Hua ◽  
...  

AbstractNucleotide analogs targeting viral RNA polymerase have been approved to be an effective strategy for antiviral treatment and are attracting antiviral drugs to combat the current SARS-CoV-2 pandemic. In this report, we develop a robust in vitro nonradioactive primer extension assay to evaluate the incorporation efficiency of nucleotide analog by SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) quantitively. Our results show that many nucleotide analogs can be incorporated into RNA by SARS-CoV-2 RdRp, and that the incorporation of some of them leads to chain termination. The discrimination values of nucleotide analog over those of natural nucleotide were measured to evaluate the incorporation efficiency of nucleotide analog by RdRp. We found that the incorporation efficiency of Remdesivir-TP is higher than ATP, and we did not observe chain termination or delayed chain termination caused by single Remdesivir-TP incorporation, while multiple incorporations of Remdesivir-TP caused chain termination in our assay condition. The incorporation efficiency of Ribavirin-TP and Favipiravir-TP is very low either as ATP or GTP analogs, which suggested that mutagenesis may not be the mechanism of action of those two drugs against SARS-CoV-2. Incorporation of Sofosbuvir-TP is also very low suggesting that sofosbuvir may not be very effective in treating SARS-CoV-2 infection. As a comparison, 2’-C-Methyl-GTP can be incorporated into RNA efficiently, and the derivative of 2’-C-Methyl-GTP may have therapeutic application in treating SARS-CoV-2 infection. This report provides a simple screening method that should be useful in evaluating nucleotide-based drugs targeting SARS-CoV-2 RdRp, and for studying the mechanism of action of selected nucleotide analog.


2020 ◽  
Author(s):  
Jialei Sun

AbstractThe outbreak of SARS in 2002-2003 caused by SARS-CoV, and the pandemic of COVID-19 in 2020 caused by 2019-nCoV (SARS-CoV-2), have threatened human health globally and raised the urgency to develop effective antivirals against the viruses. In this study, we expressed and purified the RNA-dependent RNA polymerase (RdRp) nsp12 of SARS-CoV and developed a primer extension assay for the evaluation of nsp12 activity. We found that nsp12 could efficiently extend single-stranded RNA, while having low activity towards double-stranded RNA. Nsp12 required a catalytic metal (Mg2+ or Mn2+) for polymerase activity and the activity was also K+-dependent, while Na+ promoted pyrophosphorylation, the reverse process of polymerization. To identify antivirals against nsp12, a competitive assay was developed containing 4 natural rNTPs and a nucleotide analog, and the inhibitory effects of 24 FDA-approved nucleotide analogs were evaluated in their corresponding active triphosphate forms. Ten of the analogs, including 2 HIV NRTIs, could inhibit the RNA extension of nsp12 by more than 40%. The 10 hits were verified which showed dose-dependent inhibition. In addition, the 24 nucleotide analogs were screened on SARS-CoV primase nsp8 which revealed stavudine and remdesivir were specific inhibitors to nsp12. Furthermore, the 2 HIV NRTIs were evaluated on 2019-nCoV nsp12 which showed inhibition as well. Then we expanded the evaluation to all 8 FDA-approved HIV NRTIs and discovered 5 of them, tenofovir, stavudine, abacavir, zidovudine and zalcitabine, could inhibit the RNA extension by nsp12 of SARS-CoV and 2019-nCoV. In conclusion, 5 FDA-approved HIV NRTIs inhibited the RNA extension by nsp12 and were promising candidates for the treatment of SARS and COVID-19.


2006 ◽  
Vol 71 (9) ◽  
pp. 1021-1026 ◽  
Author(s):  
M. V. Kozlov ◽  
K. M. Polyakov ◽  
A. V. Ivanov ◽  
S. E. Filippova ◽  
A. O. Kuzyakin ◽  
...  

2000 ◽  
Vol 74 (22) ◽  
pp. 10312-10322 ◽  
Author(s):  
Min-Ju Kim ◽  
Weidong Zhong ◽  
Zhi Hong ◽  
C. Cheng Kao

ABSTRACT The recombinant RNA-dependent RNA polymerase of the bovine viral diarrhea virus specifically requires a cytidylate at the 3′ end for the de novo initiation of RNA synthesis (C. C. Kao, A. M. Del Vecchio, and W. Zhong, Virology 253:1–7, 1999). Using RNAs containing nucleotide analogs, we found that the N3 and C4-amino group at the initiation cytidine were required for RNA synthesis. However, the ribose C2′-hydroxyl of the initiating cytidylate can accept several modifications and retain the ability to direct synthesis. The only unacceptable modification is a protonated C2′-amino group. Quite strikingly, the recognition of the functional groups for the initiation cytidylate and other template nucleotides are different. For example, a C5-methyl group in cytidine can direct RNA synthesis at all template positions except at the initiation cytidylate and C2′-amino modifications are tolerated better after the +11 position. When a 4-thiouracil (4sU) base analog that allows only imperfect base pairing with the nascent RNA is placed at different positions in the template, the efficiency of synthesis is correlated with the calculated stability of the template-nascent RNA duplex adjacent to the position of the 4sU. These results define the requirements for the specific interactions required for the initiation of RNA synthesis and will be compared to the mechanisms of initiation by other RNA-dependent and DNA-dependent RNA polymerases.


Author(s):  
Leili Zhang ◽  
Ruhong Zhou

Starting from December 2019, coronavirus disease 2019 (COVID-19) has emerged as a once-in-a-century pandemic with deadly consequences, which urgently calls for new treatments, cures and supporting apparatuses. Remdesivir was reported by World Health Organization (WHO) as the most promising drug currently available for the treatment of COVID-19. Here, we use molecular dynamics simulations and free energy perturbation methods to study the inhibition mechanism of remdesivir to its target SARS-CoV-2 virus RNA-dependent RNA polymerase (RdRp). In the absence of a crystal structure of the SARS-CoV-2 RdRp, we first construct the homology model of this polymerase based on a previously available structure of SARS-CoV NSP12 RdRp (with a sequence identify of 95.8%). We then build the putative binding mode by aligning the remdesivir + RdRp complex to the ATP bound poliovirus RdRp. The putative binding structure is further optimized with molecular dynamics simulations and demonstrated to be stable, indicating a reasonable binding mode for remdesivir. The relative binding free energy of remdesivir is calculated to be -8.28 ± 0.65 kcal/mol, much stronger than the natural substrate ATP (-4.14 ± 0.89 kcal/mol) which is needed for the polymerization. The ~800-fold improvement in the Kd from remdesivir over ATP indicates an effective replacement of APT in blocking of the RdRp binding pocket. Key residues D618, S549 and R555 are found to be the contributors to the binding affinity of remdesivir. These findings demonstrate that remdesivir can potentially act as a SARS-CoV-2 RNA-chain terminator, effectively stopping its RNA reproduction, with key residues also identified for future lead optimization and/or drug resistance studies.


Sign in / Sign up

Export Citation Format

Share Document