Vibrationally Energy Pooling via Collisions between Asymmetric Stretching Excited CO2: A Quasi-Classical Trajectory Study on An Accurate Full-dimensional Potential Energy Surface

Author(s):  
Dandan Lu ◽  
Jun Chen ◽  
Hua Guo ◽  
Jun Li

In low temperature plasmas, energy transfer between asymmetric stretching excited CO2 molecules can be highly efficient, which leads to further excitation (and de-excitation) of the CO2 molecules: CO2(vas) + CO2(vas)...

2019 ◽  
Vol 21 (26) ◽  
pp. 14005-14011 ◽  
Author(s):  
Gary K. Chen ◽  
Changjian Xie ◽  
Tiangang Yang ◽  
Anyang Li ◽  
Arthur G. Suits ◽  
...  

Low temperature reactions between laser-cooled Be+(2S1/2) ions and partially deuterated water (HOD) molecules have been investigated using an ion trap and interpreted with zero-point corrected quasi-classical trajectory calculations on a highly accurate global potential energy surface for the ground electronic state.


2012 ◽  
Vol 90 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Ningjiu Zhao ◽  
Yufang Liu

In this work, we employed the quasi-classical trajectory (QCT) method to study the vector correlations and the influence of the reagent initial rotational quantum number j for the reaction He + T2+ (v = 0, j = 0–3) → HeT+ + T on a new potential energy surface (PES). The PES was improved by Aquilanti co-workers (Chem. Phys. Lett. 2009. 469: 26–30). The polarization-dependent differential cross sections (PDDCSs) and the distributions of P(θr), P([Formula: see text]r), and P(θr, [Formula: see text]r) are presented in this work. The plots of the PDDCSs provide us with abundant information about the distribution of the product angular momentum polarization. The P(θr) is used to describe the correlation between k (the relative velocity of the reagent) and j′ (the product rotational angular momentum). The distribution of dihedral angle P([Formula: see text]r) shows the k–k′–j′ (k′ refers to the relative velocity of the product) correlation. The PDDCS calculations illustrate that the product of this reaction is mainly backward scatter and it has the strongest polarization in the backward and sideways scattering directions. At the same time, the results of the P([Formula: see text]r) demonstrate that the product HeT+ tends to be oriented along the positive direction of the y axis and it tends to rotate right-handedly in planes parallel to the scattering plane. Moreover, the distribution of the P(θr) manifests that the product angular momentum is aligned along different directions relative to k. The direction of the product alignment may be perpendicular, opposite, or parallel to k. Moreover, our calculations are independent of the initial rotational quantum number.


2018 ◽  
Vol 20 (40) ◽  
pp. 25951-25958 ◽  
Author(s):  
Octavio Roncero ◽  
Alexandre Zanchet ◽  
Alfredo Aguado

Is the rise of the rate constant measured in laval expansion experiments of OH with organic molecules at low temperatures due to the reaction between the reactants or due to the formation of complexes with the buffer gas?


2019 ◽  
Vol 21 (3) ◽  
pp. 1408-1416 ◽  
Author(s):  
Junxiang Zuo ◽  
Qixin Chen ◽  
Xixi Hu ◽  
Hua Guo ◽  
Daiqian Xie

A global potential energy surface for the O(3P) + C2H2reaction is developed and the quasi-classical trajectory study on the potential energy surface reproduce the rate coefficient and product branching ratio.


2014 ◽  
Vol 140 (8) ◽  
pp. 084316 ◽  
Author(s):  
Otoniel Denis-Alpizar ◽  
Thierry Stoecklin ◽  
Philippe Halvick

2012 ◽  
Vol 116 (21) ◽  
pp. 5057-5067 ◽  
Author(s):  
Jun Li ◽  
Changjian Xie ◽  
Jianyi Ma ◽  
Yimin Wang ◽  
Richard Dawes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document