Preparation of FC(S)SF, FC(S)SeF and FC(Se)SeF through matrix photochemical reactions of F2 with CS2, SCSe, and CSe2

Author(s):  
Yanina Belen Bava ◽  
Melina Cozzarín ◽  
Carlos O. Della Védova ◽  
Helge Willner ◽  
Rosana Mariel Romano

The reactions of F2 with CS2, SCSe, and CSe2, respectively, were analyzed under matrix conditions by co-deposition of the halogen with the triatomic molecules trapped in argon matrices at cryogenic...

2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


2018 ◽  
Author(s):  
Chandan Dey ◽  
Ronny Neumann

<p>A manganese substituted Anderson type polyoxometalate, [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup>, tethered with an anthracene photosensitizer was prepared and used as catalyst for CO<sub>2</sub> reduction. The polyoxometalate-photosensitizer hybrid complex, obtained by covalent attachment of the sensitizer to only one face of the planar polyoxometalate, was characterized by NMR, IR and mass spectroscopy. Cyclic voltammetry measurements show a catalytic response for the reduction of carbon dioxide, thereby suggesting catalysis at the manganese site on the open face of the polyoxometalate. Controlled potentiometric electrolysis showed the reduction of CO<sub>2</sub> to CO with a TOF of ~15 sec<sup>-1</sup>. Further photochemical reactions showed that the polyoxometalate-anthracene hybrid complex was active for the reduction of CO<sub>2</sub> to yield formic acid and/or CO in varying amounts dependent on the reducing agent used. Control experiments showed that the attachment of the photosensitizer to [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup> is necessary for photocatalysis.</p><div><br></div>


2018 ◽  
Author(s):  
Juan Sanz García ◽  
Martial Boggio-Pasqua ◽  
Ilaria Ciofini ◽  
Marco Campetella

<div>The ability to locate minima on electronic excited states (ESs) potential energy surfaces (PESs) both in the case of bright and dark states is crucial for a full understanding of photochemical reactions. This task has become a standard practice for small- to medium-sized organic chromophores thanks to the constant developments in the field of computational photochemistry. However, this remains a very challenging effort when it comes to the optimization of ESs of transition metal complexes (TMCs), not only due to the presence of several electronic excited states close in energy, but also due to the complex nature of the excited states involved. In this article, we present a simple yet powerful method to follow an excited state of interest during a structural optimization in the case of TMC, based on the use of a compact hole-particle representation of the electronic transition, namely the natural transition orbitals (NTOs). State tracking using NTOs is unambiguously accomplished by computing the mono-electronic wavefunction overlap between consecutive steps of the optimization. Here, we demonstrate that this simple but robust procedure works not only in the case of the cytosine but also in the case of the ES optimization of a ruthenium-nitrosyl complex which is very problematic with standard approaches.</div>


1989 ◽  
Vol 24 (2) ◽  
pp. 299-322 ◽  
Author(s):  
R. M. Baxter

Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.


2008 ◽  
Vol 73 (6-7) ◽  
pp. 873-897 ◽  
Author(s):  
Vladimír Špirko ◽  
Ota Bludský ◽  
Wolfgang P. Kraemer

The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.


Sign in / Sign up

Export Citation Format

Share Document