MoC/MAPbI3 Hybrid Composites for Efficient Photocatalytic Hydrogen Evolution

2021 ◽  
Author(s):  
Tiantian Zhang ◽  
Jianfei Yu ◽  
Jiyao Huang ◽  
Shengnan Lan ◽  
Yongbing Lou ◽  
...  

Metal halide perovskites such as Iodine methylamine lead (MAPbI3) have received extensive attention in the field of photocatalytic HI for hydrogen evolution due to their excellent photoelectric properties. In this...

2020 ◽  
Vol 7 (10) ◽  
pp. 2719-2725 ◽  
Author(s):  
Yue Zhao ◽  
Qingsen Zeng ◽  
Yue Yu ◽  
Tanglue Feng ◽  
Yajie Zhao ◽  
...  

This work demonstrates that carbonized polymer dots (CPDs) can efficiently promote the charge separation and photocatalytic performance of metal halide perovskites, highlighting their excellent charge-transfer ability and great potential in developing efficient perovskite-based hybrid photocatalysts.


2019 ◽  
Author(s):  
Subhajit Bhattacharjee ◽  
Sonu Pratap Chaudhary ◽  
Sayan Bhattacharyya

<p>Metal halide perovskites with high absorption coefficient, direct generation of free charge carriers, excellent ambipolar charge carrier transport properties, point-defect tolerance, compositional versatility and solution processability are potentially transforming the photovoltaics and optoelectronics industries. However their limited ambient stability, particularly those of iodide perovskites, obscures their use as photocatalysts especially in aqueous medium. In an unprecedented approach we have exploited the photo-absorption property of the less toxic lead-free Cs<sub>3</sub>Bi<sub>2</sub>X<sub>9 </sub>(X = Br, I) nanocrystals (NCs) to catalyse the degradation of water pollutant organic dye, methylene blue (MB) in presence of visible light at room temperature. After providing a proof-of-concept with bromide perovskites in isopropanol, the perovskites are employed as photocatalysts in water medium by designing perovskite/Ag<sub>2</sub>S and perovskite/TiO<sub>2 </sub>composite systems, with Type I (or quasi Type II) and Type II alignments, respectively. Ag<sub>2</sub>S and TiO<sub>2</sub> coatings decelerate penetration of water into the perovskite layer while facilitating charge carrier extraction. With a minimal NC loading, Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>/Ag<sub>2</sub>S degrades ~90% MB within an hour. Our approach has the potential to unravel the photocatalytic properties of metal halide perovskites for a wide spectrum of real-life applications. </p>


2019 ◽  
Author(s):  
Mykhailo Sytnyk ◽  
Ole Lytken ◽  
Tim Freund ◽  
Wolfgang Heiss ◽  
Christina Harreiss ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


ChemSusChem ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3605-3613 ◽  
Author(s):  
Qin Lei ◽  
Rongzhi Chen ◽  
Yurong Zhao ◽  
Huanyu Chen ◽  
Xinxin Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document