Grafting redox-active molecules on graphene oxide through diamine linker: the length optimization for electron transfer

2022 ◽  
Author(s):  
Rizwan Khan ◽  
Yuta Nishina

Redox-active molecules are grafted on graphene oxide (GO) using a two-step reaction. In the first step, GO is modified with diamine, which acts as linker for redox-active molecule. In the...

2018 ◽  
Vol 140 (42) ◽  
pp. 13935-13944 ◽  
Author(s):  
Inseong Cho ◽  
Mizuho Koshika ◽  
Pawel Wagner ◽  
Nagatoshi Koumura ◽  
Peter C. Innis ◽  
...  

2015 ◽  
Vol 44 (1) ◽  
pp. 41-43 ◽  
Author(s):  
Michio Suzuka ◽  
Shu Hara ◽  
Takashi Sekiguchi ◽  
Kenichi Oyaizu ◽  
Hiroyuki Nishide

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1428
Author(s):  
Xiaowei Fan ◽  
Xuguo Huai ◽  
Jie Wang ◽  
Li-Chao Jing ◽  
Tao Wang ◽  
...  

Graphene film has wide applications in optoelectronic and photovoltaic devices. A novel and facile method was reported for the reduction of graphene oxide (GO) film by electron transfer and nascent hydrogen produced between aluminum (Al) film deposited by magnetron sputtering and hydrochloric acid (HCl) solution for only 5 min, significantly shorter than by other chemical reduction methods. The thickness of Al film was controlled utilizing a metal detection sensor. The effect of the thickness of Al film and the concentration of HCl solution during the reduction was explored. The optimal thickness of Al film was obtained by UV-Vis spectroscopy and electrical conductivity measurement of reduced GO film. Atomic force microscope images could show the continuous film clearly, which resulted from the overlap of GO flakes, the film had a relatively flat surface morphology, and the surface roughness reduced from 7.68 to 3.13 nm after the Al reduction. The film sheet resistance can be obviously reduced, and it reached 9.38 kΩ/sq with a high transmittance of 80% (at 550 nm). The mechanism of the GO film reduction by electron transfer and nascent hydrogen during the procedure was also proposed and analyzed.


Author(s):  
Jingtao Duan ◽  
Zhiyuan Xu ◽  
Zhen Yang ◽  
Jie Jiang

Redox-active humic acids (HA) are ubiquitous in terrestrial and aquatic systems and are involved in numerous electron transfer reactions affecting biogeochemical processes and fates of pollutants in soil environments. Redox-active contaminants are trapped in soil micropores (<2 nm) that have limited access to microbes and HA. Therefore, the contaminants whose molecular structure and properties are not damaged accumulate in the soil micropores and become potential pollution sources. Electron transfer capacities (ETC) of HA reflecting redox activities of low molecular weight fraction (LMWF, <2.5) HA can be detected by an electrochemical method, which is related to redox potentials (Eh) in soil and aquatic environments. Nevertheless, electron accepting capacities (EAC) and electron donating capacities (EDC) of these LMWF HA at different Eh are still unknown. EDC and EAC of different molecular weight HA at different Eh were analyzed using electrochemical methods. EAC of LMWF at −0.59 V was 12 times higher than that at −0.49 V, while EAC increased to 2.6 times when the Eh decreased from −0.59 V to −0.69 V. Afterward, LMWF can act as a shuttle to stimulate microbial Fe(III) reduction processes in microbial reduction experiments. Additionally, EAC by electrochemical analysis at a range of −0.49–−0.59 V was comparable to total calculated ETC of different molecular weight fractions of HA by microbial reduction. Therefore, it is indicated that redox-active functional groups that can be reduced at Eh range of −0.49–−0.59 are available to microbial reduction. This finding contributes to a novel perspective in the protection and remediation of the groundwater environment in the biogeochemistry process.


2021 ◽  
Author(s):  
Dai Oyama ◽  
Takatoshi Kanno ◽  
Tsugiko Takase

Quinone derivatives and their metal complexes are well-known molecules that participate in electron-transfer reactions relevant to diverse fields. However, the fundamental knowledge on the unique reactivity of redox-active quinone complexes...


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98708-98716 ◽  
Author(s):  
Zhelin Liu ◽  
Yinghui Feng ◽  
Xiaofeng Wu ◽  
Keke Huang ◽  
Shouhua Feng ◽  
...  

Pd nanoparticles with multi-edges and corners are prepared and assembled on reduced graphene oxide to examine the electrocatalytic activity. Point discharge is regarded to be capable of facilitating the electron transfer.


Sign in / Sign up

Export Citation Format

Share Document