MicroRNA-432 inhibits milk fat synthesis by targeting SCD and LPL in ovine mammary epithelial cells

2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...

2020 ◽  
Vol 87 (3) ◽  
pp. 349-355
Author(s):  
Xinyang Fan ◽  
Lihua Qiu ◽  
Xiaohong Teng ◽  
Yongyun Zhang ◽  
Yongwang Miao

AbstractWe hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


2019 ◽  
Vol 67 (37) ◽  
pp. 10513-10520 ◽  
Author(s):  
Ping Li ◽  
Chengjian Zhou ◽  
Xueying Li ◽  
Mengmeng Yu ◽  
Meng Li ◽  
...  

Author(s):  
Nan Li ◽  
Peng-Xia Zhang ◽  
Xin Huang ◽  
Hai-Tao Yao ◽  
Dong-Pu Liu ◽  
...  

Due to the complexity of insulin in life activities, the role of insulin in mammalian lactation has not been well explained. To investigate the influence of insulin on milk fat synthesis, bovine mammary epithelial cells (BMECs) were cultured in treatment with insulin. We determined the content of Triglyceride (TG) in cell-free culture medium and found a notable increase in TG secrection. Lipid droplet staining study showed a consistent result. We also used real-time quantitative PCR and western blotting to detect the expression of signaling molecules related to milk fat synthesis. We found that insulin resulted in an obvious increase of SREBP-1, mTOR and lipogenic gene expression compared with the blank group. Taken together, our study reveals that insulin plays a significant role in milk fat synthesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan Liu ◽  
Ping Jiang ◽  
Ambreen Iqbal ◽  
Shaokat Ali ◽  
Zhen Gao ◽  
...  

AbstractMicroRNAs (miRNAs) are mRNA suppressors that regulate a variety of cellular and physiological processes, including cell proliferation, apoptosis, triglyceride synthesis, fat formation, and lipolysis, by post-transcriptional processing. In previous studies, we isolated and sequenced miRNAs from mammary epithelial cells from Chinese Holstein cows with high and low milk fat percentages. MiR-485 was one of the significantly differentially expressed miRNAs that were identified. In the present study, the relationship between the candidate target gene DTX4 and miR-485 was validated by bioinformatics and real-time fluorescent quantitative PCR (qRT-PCR) and Western blot (WB) analyses in bovine mammary epithelial cells (bMECs). The results indicated that miR-485 negatively regulated the mRNA expression of the target gene DTX4. Furthermore, an shRNA interference vector for the target gene DTX4 was constructed successfully, and it increased the triglyceride content and reduced the cholesterol content of transfected cells. These results suggest that miR-485 may affect the contents of triglycerides (TGs) and cholesterol (CHOL) by targeting the DTX4 gene. This study indicates that miR-485 has a role in regulating milk fat synthesis and that miR-485 targets the DTX4 gene to regulate lipid metabolism in bMECs. These findings contribute to the understanding of the functional significance of miR-485 in milk fat synthesis.


Sign in / Sign up

Export Citation Format

Share Document