scholarly journals Correction: Effects of mixed-valence states of Eu-doped FAPbI3 perovskite crystals studied by first-principles calculation

2021 ◽  
Vol 2 (8) ◽  
pp. 2759-2759
Author(s):  
Atsushi Suzuki ◽  
Takeo Oku

Correction for ‘Effects of mixed-valence states of Eu-doped FAPbI3 perovskite crystals studied by first-principles calculation’ by Atsushi Suzuki et al., Mater. Adv., 2021, DOI: 10.1039/D0MA00994F.

2021 ◽  
Vol 2 (8) ◽  
pp. 2609-2616
Author(s):  
Atsushi Suzuki ◽  
Takeo Oku

Effects of mixed-valence states of europium (Eu)-incorporated CH(NH2)2PbI3 (FAPbI3) and CH3NH3PbI3 (MAPbI3) perovskite crystals on electronic structures were investigated by first-principles calculation.


2012 ◽  
Vol 424-425 ◽  
pp. 137-140
Author(s):  
Chung Ho Ri ◽  
Lin Li ◽  
Yang Qi ◽  
Su Nam Kim

Using a model in which Fe at 6g sites is assumed to be partially replaced by Co, the electronic ground structure of BaCo2Fe16O27and the origin of the electrical conductivity have been studied within framework of the generalized gradient approximation (GGA) plus Hubbard U (GGA+U) calculation. Replacement of Fe at 6g site of BaFe18O27by Co causes the mixed valence states of Fe cations at 6g sites to vanish and the charge carrier density to lower. This is the main reason why both of materials reveal high electrical conductive anisotropy and the electrical resistivity of BaCo2-W is 103~104times higher than BaFe2-W.


1981 ◽  
Vol 42 (C6) ◽  
pp. C6-625-C6-627 ◽  
Author(s):  
P. E. Van Camp ◽  
V. E. Van Doren ◽  
J. T. Devreese

2021 ◽  
pp. 088532822110134
Author(s):  
Sushant Singh ◽  
Udit Kumar ◽  
David Gittess ◽  
Tamil S Sakthivel ◽  
Balaashwin Babu ◽  
...  

Many studies have linked reactive oxygen species (ROS) to various diseases. Biomedical research has therefore sought a way to control and regulate ROS produced in biological systems. In recent years, cerium oxide nanoparticles (nanoceria, CNPs) have been pursued due to their ability to act as regenerative ROS scavengers. In particular, they are shown to have either superoxide dismutase (SOD) or catalase mimetic (CAT) potential depending on the ratio of Ce3+/Ce4+ valence states. Moreover, it has been demonstrated that SOD mimetic activity can be diminished by the presence of phosphate, which can be a problem given that many biological systems operate in a phosphate-rich environment. Herein, we report a CNP formulation with both SOD and catalase mimetic activity that is preserved in a phosphate-rich media. Characterization demonstrated a highly dispersed, stable solution of uniform-sized, spherical-elliptical shaped CNP of 12 ± 2 nm, as determined through dynamic light scattering, zeta potential, and transmission electron microscopy. Mixed valence states of Ce ions were observed via UV/Visible spectroscopy and XPS (Ce3+/Ce4+ > 1) (Ce3+∼ 62%). X-ray diffraction and XPS confirmed the presence of oxygen-deficient cerium oxide (CeO2-x) particles. Finally, the CNP demonstrated very good biocompatibility and efficient reduction of hydrogen peroxide under in-vitro conditions.


2021 ◽  
Vol 27 (6) ◽  
Author(s):  
Wen-Guang Li ◽  
Yun-Dan Gan ◽  
Zhi-Xin Bai ◽  
Ming-Jian Zhang ◽  
Fu-Sheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document