A general approach to reaching perovskite nanocrystals with insulating metal sulfate shells

Nanoscale ◽  
2021 ◽  
Author(s):  
Feng Gao ◽  
Jianghua Wu ◽  
Yilin Zhao ◽  
Tinglu Song ◽  
Zhengtao Deng ◽  
...  

The strategy of constructing core/shell structure is of great importance for emitting semiconductor nanocrystals. However, the coating on soft metal halide perovskite nanocrystals at the single particle level remains a...

2021 ◽  
pp. 2100438
Author(s):  
Chengxi Zhang ◽  
Jiayi Chen ◽  
Lingmei Kong ◽  
Lin Wang ◽  
Sheng Wang ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Qixuan Zhong ◽  
Muhan Cao ◽  
Qiao Zhang

lead halide perovskite (APbX3, A= formamidinium (FA), methylammonium (MA) or Cs, X= Cl, Br, I or their mixture) NCs have attracted unprecedented attention due to their excellent photophysical properties and...


2019 ◽  
Author(s):  
Michael Worku ◽  
Yu Tian ◽  
Chenkun Zhou ◽  
Haoran Lin ◽  
Maya Chaaban ◽  
...  

Metal halide perovskite nanocrystals (NCs) have emerged as a new generation light emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g. platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectral region. Despite remarkable advances in the field of metal halide perovskite NCs over the last few years, many nanostructures in inorganic NCs have yet been realized in metal halide perovskites and producing highly efficient blue emitting perovskite NCs remains challenging and of great interest. Here we report for the first time the discovery of highly efficient blue emitting cesium lead bromide perovskite (CsPbBr3) NCs with hollow structures. By facile solution processing of cesium lead bromide perovskite precursor solution containing additional ethylenediammonium bromide and sodium bromide, in-situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effects results in color tuning of CsPbBr3 NCs from green to blue with high PLQEs of up to 81 %.<br><div><br></div>


2020 ◽  
Vol 6 (17) ◽  
pp. eaaz5961 ◽  
Author(s):  
Michael Worku ◽  
Yu Tian ◽  
Chenkun Zhou ◽  
Haoran Lin ◽  
Maya Chaaban ◽  
...  

Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr3) perovskite hollow NCs. By facile solution processing of CsPbBr3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr3 NCs from green to blue, with high PLQEs of up to 81%.


Langmuir ◽  
2019 ◽  
Vol 35 (36) ◽  
pp. 11609-11628 ◽  
Author(s):  
Chun Kiu Ng ◽  
Chujie Wang ◽  
Jacek J. Jasieniak

2018 ◽  
Vol 54 (49) ◽  
pp. 6300-6303 ◽  
Author(s):  
Chao Jia ◽  
Hui Li ◽  
Xianwei Meng ◽  
Hongbo Li

The synthesis of 3D/0D core/shell lead halide perovskite nanocrystals has been realized using the seeded growth approach for the first time.


Sign in / Sign up

Export Citation Format

Share Document