Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells

Nanoscale ◽  
2022 ◽  
Author(s):  
Long Ji ◽  
Ting Zhang ◽  
Yafei Wang ◽  
Detao Liu ◽  
Hao Chen ◽  
...  

Tin (Sn)-based perovskite solar cells (PSCs) have attracted much attention because they are more environmentally friendly than lead-based PSCs. However, the fast crystallization of Sn-based perovskite film and the easy...

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianhao Wu ◽  
Zhenzhen Qin ◽  
Yanbo Wang ◽  
Yongzhen Wu ◽  
Wei Chen ◽  
...  

AbstractPerovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided.


Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 01010
Author(s):  
Alfonsina Abat Amelenan Torimtubun ◽  
Anniza Cornelia Augusty ◽  
Eka Maulana ◽  
Lusi Ernawati

Indonesia is located along the equator lines with the high intensity of solar radiation averaging about 4.5 kWh of electrical energy/day. This potential leads to the selfsustaining energy possibility fulfilling the electricity needs. Due to their unique electronic structures and high-cost merit over the existing commercial PV technologies, perovskite solar cells (PSCs) have emerged as the next-generation photovoltaic candidate. Their highest power efficiency can be achieved of up to 22.1% in the last 5-6 years. However, this high efficiency came from CH3NH3PbI3 materials which contain lead, a toxic material. Herein calcium titanate (CT) as a lead-free perovskite material were synthesized through sintering of calcium carbonate (CaCO3) and titanium oxide (TiO2) by the sol-gel method. CT powders were characterized by SEM, XRF, FTIR and XRD then applied it onto the mesoporous heterojunction PSCs, with a device architecture ITO/TiO2/CaTiO3/C/ITO. By manipulating the raw material stoichiometry and heating temperature in the synthesis of CaTiO3, the device shows the highest power conversion efficiency (PCE) of 2.12%, shortcircuit current density (JSC) of 0.027 mA cm-2, open circuit voltage (VOC) of 0.212 V and fill factor (FF) of 53.90%. This sample can be an alternative way to create lead-free, largescale, and low-cost perovskite solar cells.


2020 ◽  
Vol 13 (9) ◽  
pp. 3093-3101 ◽  
Author(s):  
Yi Yang ◽  
Cheng Liu ◽  
Arup Mahata ◽  
Mo Li ◽  
Cristina Roldán-Carmona ◽  
...  

A universal vertically-rotated (VR) methodology is proposed to rotate the crystal orientation of 2D perovskites, which improves charge transport properties by several orders of magnitude and boosts the efficiency of 2D (n ≤ 4) PSCs to above 17%.


Author(s):  
Arunkumar Prabhakaran Shyma ◽  
Andrews Nirmala Grace ◽  
Vimala Raghavan ◽  
George Jacob ◽  
Raja Sellappan

: Perovskite-based photovoltaic technology has gained significant attention owing to its tunable electrical and optical properties. Among them, lead-based perovskites are considered as the most efficient one that delivers maximum power conversion efficiency with ample stability. In the current scenario, the perovskite-based solar cells (PSCs) can be classified into two main categories, i.e., highly efficient lead-containing and underperforming lead-free based. Even though lead-based PSCs delivers high efficiency, it loses the charm in the context of lead toxicity. The toxicity issue related to lead stands as a barrier to the commercialization of lead-based PSCs. To date, various materials have been prepared and implemented as an alternative to lead in the absorber layer. Tin (Sn) based perovskites are explored as an alternative absorber material owing to its photovoltaic properties that are comparable to lead. Tin-based perovskites exhibit some drawbacks, such as rapid crystallization, lack of oxidation stability, etc. Many research group has addressed the problems regarding tinbased perovskites and modified its structural and morphological aspects through compositional engineering as well as functional additives and managed to obtain an efficiency of around 10 %. In this review, we portray the state of the art developments of tin-based PSCs and its future perspectives.


2018 ◽  
Vol 6 (43) ◽  
pp. 21389-21395 ◽  
Author(s):  
Sergey Tsarev ◽  
Aleksandra G. Boldyreva ◽  
Sergey Yu. Luchkin ◽  
Moneim Elshobaki ◽  
Mikhail I. Afanasov ◽  
...  

Here we explore the effect of the partial substitution of univalent methylammonium cations (MA) with hydrazinium ions (HA) on the stability, morphology and photovoltaic performance of hybrid MA(1−x)HAxSnI3 systems.


Author(s):  
Ligang Xu ◽  
Chi Zhang ◽  
Xiangyun Feng ◽  
Wenxuan Lv ◽  
Zuqiang Huang ◽  
...  

Tin perovskites with narrow bandgap and high carrier mobility are highly attractive for environmentally friendly perovskite solar cells (PSCs), but the Sn-based PSCs are still less efficient and stable owing...


Sign in / Sign up

Export Citation Format

Share Document