Amphipathic Engineering of Magnetic Composites Reinforced with Ion-Copolymers-Activated Protein-Bioconjugate Functionalized Surface

Author(s):  
Zhiyong Guo ◽  
Guobin Huang ◽  
Chen Zhang ◽  
Qiuhong Yao ◽  
Tingxiu Ye ◽  
...  

Structurally stable, multifunctional ion-copolymer composites with enhanced ionic, hydrophilic and hydrophobic properties are developed utilizing multimodal materials. These hyperbranched polymeric composites function as strong supports in multifunctional applications. The integration...

2017 ◽  
Vol 3 (4) ◽  
pp. 64-68
Author(s):  
V. A. Bannyi ◽  
A. I. Savitsky ◽  
L. I. Kramoreva ◽  
E. S. Petrova ◽  
D. B. Kulikovich ◽  
...  

INEOS OPEN ◽  
2020 ◽  
Author(s):  
N. A. Samoilova ◽  

The enzyme-containing magnetic composites are presented. The magnetic matrix for enzyme immobilization is obtained by sequential application of an amine-containing polysaccharide—chitosan and a synthetic polymer—poly(ethylene-alt-maleic acid) to the magnetite microparticles to form the interpolyelectrolyte complex shell. Then, the enzyme (trypsin) is immobilized by covalent or noncovalent binding. Thus, the suggested composites can be readily obtained in the environmentally friendly manner. The enzyme capacity of the resulting composites reaches 28.0–32.6 mg/g. The maximum hydrolysis rates of the H-Val-Leu-Lys-pNA substrate provided by these composites range within 0.60·10–7–0.77·10–7 M/min.


2007 ◽  
Author(s):  
Jan Dolezel ◽  
Josef Jampilek ◽  
Jiri Dohnal ◽  
Veronika Opletalova

2017 ◽  
Vol 54 (6) ◽  
pp. 366-387
Author(s):  
T. Schwark ◽  
M. Müller ◽  
Y. Mine ◽  
T. Kreuter ◽  
O. Kraft ◽  
...  

2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document