scholarly journals Machine learning vs. field 3D-QSAR models for serotonin 2A receptor psychoactive substances identification

RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14587-14595
Author(s):  
Giuseppe Floresta ◽  
Vincenzo Abbate

Five QSAR models for predicting the affinity of 5-HT2AR ligands have been developed. The resulting models generate a useful tool for the investigation and identification of unclassified new psychoactive substances (NPS).

Author(s):  
So Yeon Lee ◽  
Sang Tak Lee ◽  
Sungill Suh ◽  
Bum Jun Ko ◽  
Han Bin Oh

Abstract High-resolution liquid chromatography (LC)–tandem mass spectrometry (MS-MS)-based machine learning models are constructed to address the analytical challenge of identifying unknown controlled substances and new psychoactive substances (NPSs). Using a training set composed of 770 LC–MS-MS barcode spectra (with binary entries 0 or 1) obtained generally by high-resolution mass spectrometers, three classification machine learning models were generated and evaluated. The three models are artificial neural network (ANN), support vector machine (SVM) and k-nearest neighbor (k-NN) models. In these models, controlled substances and NPSs were classified into 13 subgroups (benzylpiperazine, opiate, benzodiazepine, amphetamine, cocaine, methcathinone, classical cannabinoid, fentanyl, 2C series, indazole carbonyl compound, indole carbonyl compound, phencyclidine and others). Using 193 LC–MS-MS barcode spectra as an external test set, accuracy of the ANN, SVM and k-NN models were evaluated as 72.5%, 90.0% and 94.3%, respectively. Also, the hybrid similarity search (HSS) algorithm was evaluated to examine whether this algorithm can successfully identify unknown controlled substances and NPSs whose data are unavailable in the database. When only 24 representative LC–MS-MS spectra of controlled substances and NPSs were selectively included in the database, it was found that HSS can successfully identify compounds with high reliability. The machine learning models and HSS algorithms are incorporated into our home-coded artificial intelligence screener for narcotic drugs and psychotropic substances standalone software that is equipped with a graphic user interface. The use of this software allows unknown controlled substances and NPSs to be identified in a convenient manner.


Author(s):  
Trupti. S. Chitre ◽  
Kalyani. D. Asgaonkar ◽  
Amrut B. Vikhe ◽  
Shital M Patil ◽  
Dinesh. R. Garud ◽  
...  

Background: Diarylquinolines like Bedaquiline have shown promising antitubercular activity by their action of Mycobacterial ATPase. Objective: The structural features necessary for good antitubercular activity for a series of quinoline derivatives were explored through computational chemistry tools like QSAR and combinatorial library generation. In the current study, 3-Chloro-4-(2-mercaptoquinoline-3-yl)-1-substitutedphenylazitidin-2-one derivatives have been designed and synthesized based on molecular modeling studies as anti-tubercular agents. Method: 2D and 3DQSAR analysis was used to designed compounds having quinoline scaffold. The synthesized compounds were evaluated against active and dormant strains of Mycobacterium tuberculosis (MTB) H37 Ra and Mycobacterium bovis BCG. The compounds were also tested for cytotoxicity against MCF-7, A549 and Panc-1 cell lines using MTT assay. Binding affinity of designed compounds was gauged by molecular docking studies. Results: Statistically significant QSAR models generated by SA-MLR method for 2D QSAR exhibited r2 = 0.852, q2 = 0.811and whereas 3D QSAR with SA-kNN showed q2 = 0.77. The synthesized compounds exhibited MIC in the range of 1.38-14.59(µg/ml) .These compounds showed some crucial interaction with MTB Atpase. Conclusion: The present study has shown some promising results which can be further explored for lead generation.


2021 ◽  
Vol 883 ◽  
pp. 115054
Author(s):  
D. Martins ◽  
E.M.P.J. Garrido ◽  
F. Borges ◽  
J.M.P.J. Garrido

Author(s):  
Hugo López-Pelayo ◽  
Julian Vicente ◽  
Ana Gallegos ◽  
Andrew McAuley ◽  
Yacin Buyuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document