QSAR and 3D-QSAR Models in the Field of Tubulin Inhibitors as Anticancer Agents

2014 ◽  
Vol 14 (20) ◽  
pp. 2253-2262 ◽  
Author(s):  
Giovanni Marzaro ◽  
Adriana Chilin
2021 ◽  
Vol 66 (1) ◽  
Author(s):  
Reda El-Mernissi ◽  
Khalil El Khatabi ◽  
Ayoub Khaldan ◽  
Larbi ElMchichi ◽  
Md Shahinozzaman ◽  
...  

Abstract. Tubulin plays an indispensable role in regulating various important cellular processes. Recently, it is known as a hopeful therapeutic target for the rapid division of cancer cells. Novel series of 2-oxoquinoline arylaminothiazole derivatives have been recently identified as promising tubulin inhibitors with potent cytotoxicity activity against HeLa cancer cell line. In this study, a 3D-QSAR approach by using CoMFA and CoMSIA techniques was applied to the reported derivatives to understand their pharmacological essentiality contributing to the tubulin inhibition activity and selectivity. The optimum CoMFA and CoMSIA models were found to have significant statistical reliability and high predictive ability after internal and external validation. By analyzing the contour maps, the electrostatic and hydrophobic interactions were found to be crucial for improving the inhibitory activity and four novel tubulin inhibitors (Compounds D1, D2, D3, and D4) were designed based on the validated 3D-QSAR models. Moreover, the docking findings showed that residues Gln136, Val238, Thr239, Asn167, Val 318 and Ala 316 played important roles for quinoline binding to tubulin. Among the newly designed compounds, compound D1 with the highest total scoring was subjected to detailed molecular dynamics (MD) simulation and compared to the most active compound. The conformational stability of compound D1 complexed with tubulin protein was confirmed by a 50-ns molecular dynamics simulation, which was congruent with molecular docking.   Resumen. La tubulina juega un papel indispensable en la regulación de varios procesos celulares importantes. Recientemente, se le ha reconicodo como un agente promisorio para atacar la rápida división de las células cancerosas. Últimamente se ha identificado una nueva serie de derivados de arilaminotiazo-2-oxoquinolina como potenciales inhibidores de la tubulina, con una elevada actividad citotóxica contra la línea celular de cáncer HeLa. En este estudio, se aplicó a los derivados informados un estudio 3D-QSAR mediante el uso de técnicas CoMFA y CoMSIA para comprender los factores farmacológicos que contribuyen a la actividad como inhibidor y selectivo de la tubulina. Se encontró que los modelos CoMFA y CoMSIA óptimos tienen una confiabilidad estadística significativa y una alta capacidad predictiva después de la validación interna y externa. Al analizar los mapas de contorno, se descubrió que las interacciones electrostáticas e hidrófobas eran cruciales para mejorar la actividad inhibidora y se diseñaron cuatro nuevos inhibidores de la tubulina (compuestos D1, D2, D3 y D4) basados en los modelos 3D-QSAR validados. Además, los hallazgos de acoplamiento mostraron que los residuos Gln136, Val238, Thr239, Asn167, Val 318 y Ala 316 desempeñaron papeles importantes en la unión de la quinolina a la tubulina. Entre los compuestos de nuevo diseño, el compuesto D1 con la puntuación total más alta se sometió a una simulación detallada de dinámica molecular (MD) y se comparó con el compuesto más activo. La estabilidad conformacional del compuesto D1 unido a la proteína tubulina se confirmó mediante una simulación de dinámica molecular de 50 ns, que fue congruente con el acoplamiento molecular.


2016 ◽  
Vol 19 (9) ◽  
pp. 735-751 ◽  
Author(s):  
Preeti Patel ◽  
Avineesh Singh ◽  
Vijay Patel ◽  
Deepak Jain ◽  
Ravichandran Veerasamy ◽  
...  

Author(s):  
Trupti. S. Chitre ◽  
Kalyani. D. Asgaonkar ◽  
Amrut B. Vikhe ◽  
Shital M Patil ◽  
Dinesh. R. Garud ◽  
...  

Background: Diarylquinolines like Bedaquiline have shown promising antitubercular activity by their action of Mycobacterial ATPase. Objective: The structural features necessary for good antitubercular activity for a series of quinoline derivatives were explored through computational chemistry tools like QSAR and combinatorial library generation. In the current study, 3-Chloro-4-(2-mercaptoquinoline-3-yl)-1-substitutedphenylazitidin-2-one derivatives have been designed and synthesized based on molecular modeling studies as anti-tubercular agents. Method: 2D and 3DQSAR analysis was used to designed compounds having quinoline scaffold. The synthesized compounds were evaluated against active and dormant strains of Mycobacterium tuberculosis (MTB) H37 Ra and Mycobacterium bovis BCG. The compounds were also tested for cytotoxicity against MCF-7, A549 and Panc-1 cell lines using MTT assay. Binding affinity of designed compounds was gauged by molecular docking studies. Results: Statistically significant QSAR models generated by SA-MLR method for 2D QSAR exhibited r2 = 0.852, q2 = 0.811and whereas 3D QSAR with SA-kNN showed q2 = 0.77. The synthesized compounds exhibited MIC in the range of 1.38-14.59(µg/ml) .These compounds showed some crucial interaction with MTB Atpase. Conclusion: The present study has shown some promising results which can be further explored for lead generation.


MedChemComm ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 316-327 ◽  
Author(s):  
Yang Ping Quan ◽  
Li Ping Cheng ◽  
Tian Chi Wang ◽  
Wan Pang ◽  
Fan Hong Wu ◽  
...  

Compound 13a, more effective than CA-4 against HepG2 cells and tubulin, and the proposed binding mode for 13a.


Author(s):  
Reda EL-Mernissi ◽  
Khalil EL Khatabi ◽  
Ayoub Khaldan ◽  
Larbi El Mchichi ◽  
Mohammed Aziz Ajana ◽  
...  

2017 ◽  
Vol 89 (6) ◽  
pp. 870-887 ◽  
Author(s):  
Cong-Jun Liu ◽  
Tao Zhang ◽  
Shu-Ling Yu ◽  
Xing-Jie Dai ◽  
Ya Wu ◽  
...  

Author(s):  
Vaishali M. Patil ◽  
Neeraj Masand ◽  
Satya P. Gupta ◽  
Brian S. J. Blagg

: Heat shock protein 90 (HSP90) is a multichaperone complex that mediates the maturation and stability of a variety of oncogenic signaling proteins. HSP90 has emerged as a promising target for the development of anticancer agents. Heterocyclic chemical moieties with HSP90 inhibitory activity were studied continuously during the last decades, and resulting data were applied by medicinal chemists to design and develop new drugs. Their structure-activity relationship (SAR) studies and QSAR models have been derived to assist the current drug development process. The QSAR models are obtained via multiple linear regression (MLR) and non-linear approaches. Interpretation of the reported model highlights the core template required to design novel, potent HSP90 inhibitors to be used as anticancer agents.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 387
Author(s):  
Xiangcong Wang ◽  
Moxuan Zhang ◽  
Ranran Zhu ◽  
Zhongshan Wu ◽  
Fanhong Wu ◽  
...  

PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).


Sign in / Sign up

Export Citation Format

Share Document