scholarly journals Sol–gel auto combustion synthesis, characterization, and application of Tb2FeMnO6 nanostructures as an effective photocatalyst for the discoloration of organic dye contaminants in wastewater

RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26844-26854
Author(s):  
Mina Dara ◽  
Mohammad Hassanpour ◽  
Omid Amiri ◽  
Mahin Baladi ◽  
Masoud Salavati-Niasari

In this study, new double perovskite Tb2FeMnO6 nanoparticles were successfully synthesized by a sol–gel auto combustion method for the first time. The photocatalytic properties of the nanoparticles were also evaluated for the first time.

2014 ◽  
Vol 22 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Ioana A. Gorodea

Abstract Double perovskite-type oxide Ca2BMoO6 materials, where B = Cr, La and Sm, were prepared by the sol-gel auto-combustion method for the first time. The role of different B-site cations on their synthesis, structures, and magnetic properties was investigated. The synthesis progress was followed by the Fourier transform infrared spectroscopy and the samples’ structure was investigated by X-ray diffraction. The increase of the ionic radii B leads to the decrease of the t-value which reflects the structural distortion from the ideal cubic perovskite. Magnetization measurements were made with a SQUID magnetometer. All compounds are ferimagnetic and magnetic properties are indirectly influenced by the distortion degree of the lattice and disorder on the B/B’ positions


RSC Advances ◽  
2021 ◽  
Vol 11 (14) ◽  
pp. 8228-8238
Author(s):  
Mina Dara ◽  
Mohammad Hassanpour ◽  
Hassan Abbas Alshamsi ◽  
Mahin Baladi ◽  
Masoud Salavati-Niasari

In this work, new double perovskite Tb2ZnMnO6 nanoparticles were successfully synthesized by a sol–gel auto combustion method.


2013 ◽  
Vol 67 (10) ◽  
Author(s):  
Simona Feraru ◽  
Petrisor Samoila ◽  
Valentin Nica ◽  
Alexandra Iordan ◽  
Mircea Palamaru

AbstractFor the synthesis of Ca2XBiO6 (X = Dy, Fe, Al) metal oxides with ordered double-perovskite structure, the sol-gel auto-combustion method has been used for the first time. The synthesis progress was followed by the Fourier transform infrared spectroscopy and the samples structure was investigated by X-ray diffraction. The samples morphology was studied by means of scanning electron microscopy. The influence of the nature of the trivalent B-site cation on the dielectric properties was evaluated by resistivity measurements in vacuum at frequencies between 102–105 Hz. The best dielectric behavior was obtained for Ca2AlBiO6 and Ca2DyBiO6, while the best semiconductor behavior was found for Ca2FeBiO6.


2013 ◽  
Vol 11 (8) ◽  
pp. 1330-1342 ◽  
Author(s):  
Alin Druc ◽  
Anca Dumitrescu ◽  
Adrian Borhan ◽  
Valentin Nica ◽  
Alexandra Iordan ◽  
...  

AbstractNano-sized magnesium ferrites were synthesized by the sol-gel auto-combustion method using a variety of chelating/combustion agents: tartaric acid, citric acid, cellulose, glycine, urea and hexamethylenetetramine. The original purpose of this work was the synthesis of nano-sized magnesium ferrite by using, for the first time, cellulose and hexamethylenetetramine as chelating/combustion agents. Synthesized samples were subjected to different heat treatments at 773 K, 973 K and, respectively 1173 K in air. The disappearance of the organic phase and nitrate phase with the spinel structure formation was monitored by infrared absorption spectroscopy. Spinel structure, crystallite size and cation distribution were evaluated by X-ray diffraction data. The morphology of as-prepared powders was studied using scanning electron microscopy. The magnetic and dielectric properties were studied for the obtained samples.


2014 ◽  
Vol 67 (2) ◽  
pp. 250 ◽  
Author(s):  
Simona Feraru ◽  
Adrian I. Borhan ◽  
Petrisor Samoila ◽  
Gigel G. Nedelcu ◽  
Alexandra R. Iordan ◽  
...  

Double perovskite metal oxides with formula A2DyBiO6 (A = Mg, Ca, Sr, Ba) were synthesised by a sol–gel auto-combustion method, using citric acid as the combustion agent. The effects of A-site cation on the structure, morphology, and dielectric properties were examined. The synthesis was monitored using Fourier transform infrared spectroscopy (FTIR) to indicate the absence of organic phase. X-ray diffraction (XRD) analysis showed that the compounds have three different perovskite structures. Structural characterisation of the samples was evaluated using XRD patterns. Scanning electron microscopy showed that all samples are formed by agglomerated particles. Dielectric properties were evaluated using dielectric permittivity and dielectric losses. Cole–Cole plots show a single semicircle for all materials, indicating that the double perovskites obtained are composed of well conducting grain boundaries and poorly conducting grains.


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


Sign in / Sign up

Export Citation Format

Share Document