scholarly journals One-step fabrication of soft calcium superhydrophobic surfaces by a simple electrodeposition process

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 297-308
Author(s):  
Zhi Chen ◽  
Yongbo Hu ◽  
Xu He ◽  
Yihao Xu ◽  
Xuesong Liu ◽  
...  

We investigated a one-step method for calcium superhydrophobic surface preparation and researched the formation process of loose, flower-like microstructures. Also, we found that the pressing force strongly impacts the dynamics of water droplets.

2019 ◽  
Vol 473 ◽  
pp. 493-499 ◽  
Author(s):  
Dongguang Zhang ◽  
Linghan Li ◽  
Yali Wu ◽  
Bin Zhu ◽  
Honglie Song

2012 ◽  
Vol 463-464 ◽  
pp. 349-353 ◽  
Author(s):  
Feng Guo ◽  
Xun Jia Su ◽  
Gen Liang Hou ◽  
Zhao Hui Liu ◽  
Hai Peng Jia

Superhydrophobic surfaces have been a hot topic during the last decade owing to their great potential in widely application. In this work, we report on a facile and low-cost two-step method to fabricate superhydrophobic surface on steel substrates. The as-obtained surface shows an interesting hierarchical structure composed of microscale flowerlike cluster and nanoscale particles, which is similar to that of a lotus leaf. After further modification with stearic acid, the resultant surface exhibits remarkable superhydrophobic properties. The water contact angle is as high as 155°. Moreover, the superhydrophobic properties are long-term stable.


Author(s):  
Yan Liu ◽  
Jindan Liu ◽  
Shuyi Li ◽  
Yaming Wang ◽  
Zhiwu Han ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1003
Author(s):  
Dili Shen ◽  
Wuyi Ming ◽  
Xinggui Ren ◽  
Zhuobin Xie ◽  
Xuewen Liu

When the water droplets are on some superhydrophobic surfaces, the surface only needs to be inclined at a very small angle to make the water droplets roll off. Hence, building a superhydrophobic surface on the material substrate, especially the metal substrate, can effectively alleviate the problems of its inability to resist corrosion and easy icing during use, and it can also give it special functions such as self-cleaning, lubrication, and drag reduction. Therefore, this study reviews and summarizes the development trends in the fabrication of superhydrophobic surface materials by non-traditional processing techniques. First, the principle of the superhydrophobic surfaces fabricated by laser beam machining (LBM) is introduced, and the machining performances of the LBM process, such as femtosecond laser, picosecond laser, and nanosecond laser, for fabricating the surfaces are compared and summarized. Second, the principle and the machining performances of the electrical discharge machining (EDM), for fabricating the superhydrophobic surfaces, are reviewed and compared, respectively. Third, the machining performances to fabricate the superhydrophobic surfaces by the electrochemical machining (ECM), including electrochemical oxidation process and electrochemical reduction process, are reviewed and grouped by materials fabricated. Lastly, other non-traditional machining processes for fabricating superhydrophobic surfaces, such as ultrasonic machining (USM), water jet machining (WJM), and plasma spraying machining (PSM), are compared and summarized. Moreover, the advantage and disadvantage of the above mentioned non-traditional machining processes are discussed. Thereafter, the prospect of non-traditional machining for fabricating the desired superhydrophobic surfaces is proposed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhaolong Li ◽  
Yingtao Liu

Background: Superhydrophobic surfaces have unique wettability and have shown broad application prospects in many fields, such as self-cleaning and lubrication drag reduction. However, the superhydrophobic surfaces are severely restricted by their poor mechanical stability in practical application, and the mechanical stability of the superhydrophobic surface is always affected by different preparation methods. Therefore, people pay more attention to the preparation methods of superhydrophobic surfaces. Objective: The study aims to improve the mechanical stability of the superhydrophobic surface and expand the application fields of the superhydrophobic surfaces; preparation methods of the superhydrophobic surface have been continuously improved. Methods: This paper reviews various representative patents and papers on preparation methods of the superhydrophobic surface at home and abroad. Results: In this review, the basic methods of preparing superhydrophobic surfaces were introduced, and three typical methods were summarized, such as etching method, coating method, and sol-gel method, then their advantages and disadvantages were discussed. In combination with the latest research progress, it is proposed that the use of environmentally friendly low surface energy modifiers and the use of the one-step method to prepare superhydrophobic surfaces are the future development trends. Aiming at the problem of the mechanical stability of superhydrophobic surfaces, the instability mechanism and stability evaluation methods of superhydrophobic surfaces under mechanical action are reviewed, and three basic methods to improve the mechanical stability of superhydrophobic surfaces are proposed. Conclusion: The optimization of the preparation method of the superhydrophobic surface is beneficial to improve the mechanical stability of the superhydrophobic surface and expand the application prospect of the superhydrophobic surfaces in various fields. More patents and papers on the superhydrophobic surface will be invented later.


Sign in / Sign up

Export Citation Format

Share Document