nanoscale particles
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 63)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 16 (2) ◽  
pp. 59-70
Author(s):  
E. S. Prokhorov

A mathematical model of gas detonation of fuel-enriched mixtures of hydrocarbons with oxygen has been formulated, which makes it possible to numerically study the equilibrium flows of detonation products in the presence of free carbon condensation. Reference data for graphite were used to describe the thermodynamic properties of carbon condensate. The calculations are compared with the known results of experimental studies in which, when detonating an acetylene-oxygen mixture in a pipe closed at one end, it is possible to obtain nanoscale particles from a carbon material with special properties. It is assumed that the melting point of such a material is lower than that of graphite and is about 3100 K. Only with such an adjustment of the melting temperature, the best agreement (with an accuracy of about 3 %) was obtained between the calculated and experimental dependence of the detonation front velocity on the molar fraction of acetylene in the mixture.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
TaeHyung Kim ◽  
Q-Han Park

Abstract Nanoscale particles and structures hold promise in circular dichroism (CD) spectroscopy for overcoming the weakness of molecular CD signals. Significant effort have been made to characterize nanophotonic CD enhancement and find efficient ways to boost molecular chirality, but the best solution is yet to be found. In this paper, we present a rigorous analytic study of the nanophotonic CD enhancement of typical nanoparticles. We consider metallic and dielectric nanoparticles capped with chiral molecules and analyze the effect of multipolar nanoparticles on the molecular CD. We identify the spectral features of the molecular CD resulting from the electric and magnetic resonances of nanoparticles and suggest better ways to boost molecular chirality. We also clarify the contribution of particle scattering and absorption to the molecular CD and the dependence on particle size. Our work provides an exact analytic approach to nanophotonic CD enhancement and offers a rule for selecting the most efficient particle for sensitive molecular chirality detection.


Author(s):  
В.П. Смагин ◽  
А.А. Исаева ◽  
Е.А. Шелепова

Nanoscale particles ZnS:Nd3+, CdS:Nd3+ and (Zn,Cd)S:Nd3+ were synthesized and doped in a polymerizing methyl methacrylate medium during the production of optically transparent polyacrylate composites of the composition PMMA/ZnS:Nd3+, PMMA/CdS:Nd3+ and PMMA/(Zn,Cd)S:Nd3+. The excitation of photoluminescence (FL) and FL of semiconductor structures in composites is associated with the transition of electrons from the valence band to the conduction band and to the levels of structural defects of semiconductor particles, followed by recombination at these levels. Based on changes in the excitation spectra of FL and FL composites, assumptions are made about the structure of particles, the distribution of Nd3+ ions in it and their effect on photoluminescence.


Author(s):  
Boris N. Filatov ◽  
Natalya I. Latyshevskaya ◽  
Natalya V. Krylova ◽  
Irina K. Gorkina ◽  
Yulya I. Velikorodnaya ◽  
...  

The presence of grinding, mixing, and fractionation of solid components of formulations leads to the formation of aerosols in the air of the working area with a wide range of dispersion of the solid phase - all this characterizes the organization of technological processes for the production of energy-intensive materials. The study aims to give a qualitative assessment of possible air pollution of the working area of energy-intensive materials production by nanoscale aerosols with a solid dispersed phase. The researchers carried out the sampling of the working area air and flushes from solid horizontal surfaces to produce energy-intensive materials. We carried out the sampling by forced circulation of the test air through the absorption devices of Polezhaev. Scientists used Triton TX-114 solution with a mass concentration of 2.0 mg/dm3 as an absorption medium. The researchers performed flushing from surfaces using cloth tampons moistened with Triton TX-114 solution with a mass concentration of 2.0 mg/dm3. We determined the particle sizes in the samples using NanotracULTRA (Microtrac). Scientists found aluminum and nitrocellulose particles with sizes from 36 to 102 nm in the air of the working area and flushes from horizontal surfaces. The study of the fractional composition of RDX and aluminum powders of the ASD-1 brand showed the presence of nanoscale particles in them. Nanoscale dust particles pollute the air of the working area and solid horizontal surfaces at certain stages of the production of energy-intensive materials. There are nanoscale particles in the composition of powders of some standard components of formulations. Flushes from solid horizontal surfaces are an adequate qualitative indicator of the presence of nanoaerosols in the air of the working area.


2021 ◽  
Vol 11 (24) ◽  
pp. 12132
Author(s):  
Ilnur Ishmukhametov ◽  
Rawil Fakhrullin

Carbon nanotubes have emerged as a versatile and ubiquitous nanomaterial, finding applications in industry and biomedicine. As a result, biosafety concerns that stimulated the research focused on evaluation of carbon nanotube toxicity. In addition, biomedical applications of carbon nanotubes require their imaging and identification in biological specimens. Among other methods, dark-field microscopy has become a potent tool to visualise and identify carbon nanotubes in cells, tissues, and organisms. Based on the Tyndall effect, dark-field optical microscopy at higher magnification is capable of imaging nanoscale particles in live objects. If reinforced with spectral identification, this technology can be utilised for chemical identification and mapping of carbon nanotubes. In this article we overview the recent advances in dark-field/hyperspectral microscopy for the bioimaging of carbon nanotubes.


Author(s):  
Gunel Imanova ◽  
Elmar Asgerov ◽  
Sakin Jabarov ◽  
Mustafa Kaya ◽  
Aleksandr Doroshkevich

The physicalchemistry properties and crystal structure of were nano-ZrO2+3mol.%Y2O3 determined. The kinetics of the formation of H2 as a result of the decomposition of H2O on the surface of nano-ZrO2+3mol.%Y2O3 was studied. Effects of adsorption and desorption process on ZrO2+3 mol.%Y2O3 nanoparticles were studied at different (T=400÷10000C) temperature. The study of H2 in thermal processes at nano-ZrO2+3 mol.%Y2O3 system increased. Such an increase in H2 generation in comparison with a pure H2O as thermal processes had formedactive centers for H2O decomposition on the surface of the catalyst at the expense of δ-electrons emitted on the surface of nano-ZrO2+3 mol.%Y2O3. This showed that the dimensions of the studied nanoscale particles systems are comparable to the free running distance of energy carriers generated by of nano-ZrO2+3 mol.%Y2O3 as a result of thermal processes. These results are promising for hydrogen generation by waer spliting in near future.


2021 ◽  
Author(s):  
Raphael P.B. Jacquat ◽  
Georg Krainer ◽  
Quentin Peter ◽  
Ali Nawaz Babar ◽  
Oliver Vanderpoorten ◽  
...  

An approach relying on nano-cavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nano-cavity diffusional sizing (NDS), measures particle residence times within fluidic nano-cavities to determine their hydrodynamic radii. Using theoretical modelling and simulation, we show that the residence time of particles within nano-cavities above a critical timescale depends on the diffusion coefficient of the particle, which allows estimation of the particle's size. We demonstrate this approach experimentally through measurement of particle residence times within nano-fluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale objects for potential application in nanobiotechnology, biophysics, and clinical diagnostics.


2021 ◽  
pp. 2101334
Author(s):  
Guanyu Zhang ◽  
Weiwei Cui ◽  
Wei Pang ◽  
Shuchang Liu ◽  
Shupeng Ning ◽  
...  

Small ◽  
2021 ◽  
pp. 2105781
Author(s):  
Kosuke Tanaka ◽  
Yusuke Takahashi ◽  
Hidetoshi Kuramochi ◽  
Masahiro Osako ◽  
Shunsuke Tanaka ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document